Auteurs
Gubellini P - Ben-Ari Y - Gaïarsa JL
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
Abstract
In the developing rat hippocampus, GABAergic synapses undergo a Ca2+-dependent long-term potentiation (LTP(GABA-A)); this form of synaptic plasticity is induced in CA3 pyramidal neurons by delivering repetitive depolarizing pulses (DPs) to the recorded neuron, and it is expressed as a long-lasting increase in the frequency and amplitude of spontaneous GABA(A) receptor-mediated postsynaptic currents. In the present study, we examined the role of endogenous tropomyosin-related kinase receptor B (TrkB) receptor ligands and associated protein tyrosine kinases (PTKs) in the induction of LTP(GABA-A). The application of Lavendustin A, a broad spectrum PTK inhibitor, blocked the induction of LTP(GABA-A), whereas Lavendustin B, its inactive form, had no effect. Moreover, k-252a and k-252b, two alkaloids that inhibit the kinase activity of the Trk receptor family, also prevented the induction of LTP(GABA-A). On hippocampal slices incubated with the soluble form of TrkB receptor IgG (TrkB-IgG), which prevents the activation of TrkB receptors by endogenous ligands, DPs failed to induce LTP(GABA-A), whereas the incubation with TrkA-IgG or TrkC-IgG had no such effect. Altogether, these data indicate that endogenous TrkB ligands and associated PTK activity are necessary for the induction of GABAergic LTP in the developing rat hippocampus.