Auteurs
Papp E - Leinekugel X - Henze DA - Lee J - Buzsáki G
Journal
Neuroscience
Abstract
Dendrites of pyramidal cells perform complex amplification and integration (reviewed in Refs 5, 9, 12 and 20). The presence of a large proximal apical dendrite has been shown to have functional implications for neuronal firing patterns (13) and under a variety of experimental conditions, the largest increases in intracellular Ca2+ occur in the apical shaft.(4,8,15,16,19,21-23) An important step in understanding the functional role of the proximal apical dendrite is to describe the nature of synaptic input to this dendritic region. Using light and electron microscopic methods combined with in vivo labeling of rat hippocampal CA1 pyramidal cells, we examined the total number of GABAergic and non-GABAergic inputs converging onto the first 200microm of the apical trunk. The number of spines associated with excitatory terminals increased from <0.2 spines/microm adjacent to the soma to 5.5 spines/microm at 200microm from the soma, whereas the number of GABAergic, symmetric terminals decreased from 0.8/microm to 0.08/microm over the same anatomical region. GABAergic terminals were either parvalbumin-, cholecystokinin- or vasointestinal peptide-immunoreactive. These findings indicate that the apical dendritic trunk mainly receives synaptic input from GABAergic interneurons. GABAergic inhibition during network oscillation may serve to periodically isolate the dendritic compartments from the perisomatic action potential generating sites.