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SUMMARY

Self-location and navigation are crucial to daily life, and their disruption is particularly disabling. The hippo

campus is central to this process as well as episodic memory. Hippocampal place cells are spatially selec

tive, increasing their activity in specific locations. When external landmarks are scarce, place cells use 

self-motion (idiothetic) information to track location based on distance traveled (distance coding). Distance 

coding may be particularly relevant to episodic memory. However, the determinants of distance coding are 

poorly understood. Here, we used virtual reality, electrophysiological recordings in mice, and local cue 

manipulations to isolate and characterize hippocampal distance coding. In cue-poor conditions, a global dis

tance coding scheme dominated hippocampal activity with high distance indices in all place cells, including 

both superficial and deep CA1 pyramidal cells. The mapping of distance onto a low-dimensional manifold and 

rigid distance relationships between place fields are compatible with attractor dynamics similar to those 

observed for grid cells. Inactivation of the medial septum (MS), which disrupts grid cells, significantly reduced 

both distance coding and rigid distance dynamics, suggesting an alteration (but not complete abolition) of 

the underlying attractor. By contrast, place cell coding was also influenced by local visual cues in cue-rich 

environments, notably deep CA1 pyramidal cells, and this persisted under MS inactivation. We propose 

that grid cells and associated rigid attractor dynamics predominantly contribute to hippocampal distance 

coding.

INTRODUCTION

When navigating to find food, escape predators, or find potential 

mates, animals can use two strategies: the cognitive map and 

path integration.1 In cue-rich (CR) environments, the cognitive 

map strategy relies on the acquisition, through learning, of an in

ternal representation of the environment that contains spatial re

lationships between significant landmarks and important loca

tions.2 The hippocampus has been implicated in this type of 

navigation.3,4 By contrast, the path integration strategy allows 

animals to locate themselves independently from external sen

sory cues using self-motion (idiothetic) cues to continuously up

date their location along a travel path by integrating the distance 

traveled in different directions.5 Recent theories posit that hippo

campal algorithms involved in path integration have been repur

posed, through evolution, to support self-referenced episodic 

memory.6 Further, path integration deficit is an early sign of 

Alzheimer’s disease. However, reports of hippocampal distance 

coding have been scarce.7–9 Therefore, the underlying neural de

terminants remain largely unknown.

At the cellular level, while the morpho-functional heterogeneity 

of CA1 pyramidal cells along the hippocampal radial axis is now 

well established,10–12 it remains unknown whether distance cod

ing can be mapped specifically to a given CA1 pyramidal cell 

subtype (deep vs. superficial). At the network level, the contribu

tion of grid cells to hippocampal coding is unclear. Grid fields 

show fixed and rigid distance relationship,13,14 supported by a 

recurrent continuous attractor network (CAN) with a toroidal to

pology,15 and could provide a distance metric to hippocampal 

place cells.16 In addition, medial septum (MS) inactivation, which 

reduces theta rhythmicity and selectively alters the spatial firing 

pattern of grid cells,17,18 does not prevent place cells’ coding in 

small environments18,19 but disrupts distance estimation based 

on path integration in rats navigating in the dark20 and place 
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cell activity away from external landmarks.19,21 Finally, during 

postnatal development, the accuracy of place cell coding away 

from boundaries improves with the functional maturation of 

grid cells.22 Taken together, these results are consistent with a 

contribution of grid cells to hippocampal distance coding.23

However, grid cell firing is disrupted in the absence of visual 

cues when self-motion-based distance coding should domi

nate,24,25 and distance coding can be observed in preweaned 

rats before grid cell maturation,26 calling this specific role into 

question.

To address these questions, we performed large-scale extra

cellular recordings from CA1 pyramidal cells during virtual navi

gation in CR and/or cue-poor (CP) virtual environments.27 We 

focused on bidirectional place cells in hippocampal area CA1 

with place fields in both forward and backward trials to decipher 

whether individual cells exhibited distance coding (firing at the 

same distance from the start of each trial).7 Distance coding 

dominated hippocampal activity in the absence of salient local 

visual cues (CP environment), thus providing a unique opportu

nity to decipher its cellular and circuit determinants. In particular, 

we asked whether it is supported by a specific subpopulation of 

deep or superficial CA1 pyramidal cells. We also characterized 

distance coding at the population level, looking for signatures 

of attractor dynamics using dimensionality reduction ap

proaches and correlation analysis. Finally, we tested the effect 

of MS inactivation on hippocampal distance coding at both the 

cellular and population levels. Overall, our results demonstrate 

pervasive egocentric distance coding in the hippocampus during 

virtual navigation in CP environments, supported by both deep 

and superficial CA1 pyramidal cells. In this condition, place cells’ 

distance coding was strongly reduced (but not completely abol

ished) by MS inactivation. However, place cell coding was also 

influenced by local visual cues in CR environments, including un

der MS inactivation. Taken together, our results are consistent 

with a predominant contribution of grid cells to hippocampal dis

tance coding.

RESULTS

Absence of local visual cues promotes distance coding 

in bidirectional CA1 place cells

Proximal visual cues have a strong influence on the coding of 

hippocampal place cells in virtual reality environments.27 We first 

tested their influence on the propensity of hippocampal place 

cells to perform distance coding. For this, head-fixed mice 

were trained to run in two different virtual linear tracks: a CR track 

locally enriched with salient visual cues (3D virtual objects) or a 

CP track without objects (Figures 1A and 1B) for sweetened wa

ter rewards distributed at the track ends. Immediately after 

reward consumption, mice were teleported to the same position 

but facing the opposite direction of the track, allowing them to 

run back and forth in the same environment. Once animals 

reached a stable and proficient behavior (minimum one 

reward/min per recording session; see STAR Methods), we re

corded the spiking activity in the pyramidal cell layer of the 

CA1 hippocampal region using 8-shank silicon probes in the 

right and/or left hemisphere over the course of 2–3 days (CR: 

402 neurons from 9 recording sessions in 4 mice; CP: 1,462 neu

rons from 19 recording sessions in 14 mice).

We focused on bidirectional place cells because these cells, 

which have place fields in back-and-forth trials, allow distin

guishing distance coding (firing at the same distance from 

the start of each trial).7,28 Bidirectional place cells represent 

only a minority of place cells recorded in mice and rats navi

gating back and forth in real linear tracks28 as well as rats 

on virtual reality linear tracks.7 In agreement with these 

studies, a low proportion of place cells were bidirectional 

when mice navigated back and forth in the CP track 

(30.5% ± 4.0% of all place cells). Furthermore, the percentage 

of bidirectional place cells was significantly higher in the CR 

compared with the CP track (46.1% ± 4.7% of all place cells; 

p = 0.028; Figure S1C), which is in agreement with the re

ported influence of local sensory cues on the directionality 

of place cells’ coding in real linear tracks.28 Therefore, the 

modulation of place cells’ activity by movement direction in 

both CP and CR tracks is consistent with previous work in 

both real and virtual linear environments.

In the CP environment, the vast majority of bidirectional place 

cells appeared to have place fields at a similar distance from the 

start of each journey in back-and-forth trials (Figure 1C, blue). 

This was evident when we plotted the place fields sorted by their 

location in one direction (Figure 1D, ‘‘sorted’’) and compared 

them with the location of the place fields when mice ran in the 

opposite direction (Figure 1D): we observed a mirror image. To 

quantify this, we computed a distance index (see STAR 

Methods) whose value varies from 1 when place fields are at 

the exact same distance in back-and-forth trials to − 1 when 

they are at the same location in reference to external visual 

cues. In the CP track, the distance index was close to 1 (0.88 ± 

0.03; n = 86 bidirectional cells; Figure 1E).

Next, we focused on bidirectional place cells in the CR track. 

As previously reported, the presence of proximal visual cues 

significantly increased the proportion of spatially modulated 

cells (place cells) among active cells (CR: 68.9% ± 4.6% vs. 

CP: 32.2% ± 3.1%; p < 10− 6; Figures S1A and S1B).27,29 In 

this condition we also observed bidirectional distance coding 

place cells (Figures 1C orange and 1D), but in addition, some 

bidirectional place cells also appeared to code near salient visual 

cues (3D objects) in back-and-forth trials (Figures 1C orange and 

1D). Indeed, the distance index was significantly lower in the CR 

compared with the CP environment (CR: 0.38 ± 0.05; p < 10− 11; 

Figure 1E), while a ‘‘cue index,’’ which captures the tendency of 

cells to fire in reference to salient visual cues, was significantly 

higher in the CR compared with the CP environment (CR: 

0.06 ± 0.07; CP: − 0.62 ± 0.05; p < 10− 10; Figure 1E).

Next, we classified bidirectional place cells as distance-cod

ing cells or cue-dependent-coding cells (see STAR Methods). 

Strikingly, in the CP track almost all bidirectional place cells 

were distance-coding cells: 94.2% (n = 81 out of 86) 

(Figures 1D, 1F, and S1D). In the CR track, the proportion of dis

tance-coding and cue-dependent coding cells was more 

balanced: distance-coding: 50.5% (n = 49 out of 97) and cue- 

dependent coding: 33.0% (n = 32) (Figures 1D, 1F, and S1E). 

The proportions of distance and cue-dependent coding cells 

were significantly different between track conditions (X2(2, n = 

183) = 42.7, p < 10− 9, chi-squared test). However, in the CR 

track, we did not observe significant differences between dis

tance coding and cue-dependent coding place cells in terms 
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of firing rate (Z = − 0.24, p = 0.81, Wilcoxon rank-sum test or WRS 

test), spatial information (Z = 1.70, p = 0.09, WRS test), stability 

(t(79) = − 1.35, p = 0.18, unpaired t test), mean place field width 

(Z = − 0.19, p = 0.85, WRS test), or place field deviation (Z = 

0.84, p = 0.40, WRS test).

We concluded that, in the absence of salient local visual cues, 

distance coding dominates bidirectional place cell activity in vir

tual reality environments but that a mixture of cue-dependent 

and distance coding can be observed in heterogeneous virtual 

environments locally enriched with salient visual cues.
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Figure 1. Absence of local visual objects promotes distance coding in CA1 bidirectional place cells 

(A) Schematic of the virtual reality setup. The mouse is head-fixed and placed on a wheel surrounded by LCD screens displaying a virtual environment. A guide 

cannula is implanted in the MS for intracranial infusion of muscimol or aCSF (see Figure 3). 

(B) Top and first-person views of the virtual linear tracks used. Left: CP track; right: CR track with 2 virtual 3D objects. 

(C) 4 examples of bidirectional cells recorded in the CP track (left) or in the CR track (right). For each cell, the panel shows the color-coded firing rate map for 

successive trials in both directions (arrows) as a function of the location in the maze and the corresponding mean firing rate for each location (reward zones 

excluded). Bold traces indicate the detected place fields. 

(D) Color-coded mean firing rate maps of place fields detected in the forth trials (left, sorted by the location of place fields peak) and back trials (right, sorted 

according to firing order in the forth trials) of all bidirectional cells recorded in the track with objects (top) or without objects (bottom). The color represents the 

intensity of the mean firing rate in a given bin normalized to the maximum mean firing rate (peak rate) in each direction. Note that in the CP condition, the mean 

firing map in one direction is the mirror image of the mean firing map in the other direction, indicating strong distance coding. Dotted lines indicate the central zone 

of the maze. Bidirectional cells with both fields located in this region were excluded from the analysis. 

(E) Boxplots comparing distance (top) or cue (bottom) indices between CR and CP, Z = 7.08, p < 10− 11, WRS test for distance index and Z = − 6.66, p < 10− 10, 

WRS test for cue index. 

(F) Scatterplots of distance index vs. cue index for each bidirectional cell recorded in CP (top) or CR (bottom). For each track condition, cells exhibiting cue- 

dependent or distance coding are indicated by a purple or green box, respectively (insets: percentage of place cells). Note that in these plots, by definition, no 

point can be observed below the top-left-bottom-right diagonal. Here and elsewhere, error bars indicate standard error of the mean and *p < 0.05, **p < 0.01, 

***p < 0.001. 

See also Figures S1, S2, and S4.
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Objects are heterogeneously distributed in the CR track, with 

one part enriched with objects (CR part) and another part 

without objects (CP part). Since both distance and cue-depen

dent coding place cells can be recorded in this track, we 

wondered whether their place fields were heterogeneously 

distributed between CR and CP parts of the track. While the 

place fields of distance-coding cells were equally distributed 

between CR and CP parts of the track (18.4% CR vs. 19.4% 

CP), the place fields of cue-dependent coding cells were pref

erentially located next to salient visual cues (3D objects; 59.4% 

vs. 14.1% CP; p < 10− 4; Figure S1F). Given the tendency 

of place cells to overrepresent locations close to salient 

cues,27,29 cue-dependent coding may result from the incidental 

overlap of place fields in the CR part of the track. To assess this 

possibility, we randomly moved the place fields of cue-depen

dent coding place cells in the CR track to mimic a remapping 

between back-and-forth trials while maintaining a higher den

sity of place fields in the CR part. Then, we compared the 

observed proportion of cue-dependent coding place cells and 

their cue index to the distribution obtained by 1,000 randomiza

tions. While the distribution of place fields along the maze did 

not differ significantly before and after randomization (p = 

0.99; Figures S2A and S2B), the observed percentage of cue- 

dependent coding place cells (33.0%) was significantly above 

the distribution predicted from 1,000 randomizations (mean: 

19.2% ± 0.07%; 99% confidence limit: 24.5%; p < 0.001; 

Figure S2C). The observed cue index (0.77 ± 0.03) was also 

significantly above the distribution predicted from 1,000 ran

domizations (mean: 0.59 ± 0.01; 99% confidence limit: 0.68; 

p < 0.001; Figure S2D). These results confirm that, in addition 

to idiothetic distance coding, a cue-dependent coding can be 

observed in the CR track.

Both deep and superficial CA1 pyramidal cells exhibit 

distance coding in CP environments

CA1 pyramidal cells are morpho-functionally diverse depending 

on their location along radial, proximo-distal, and transverse 

axes of the hippocampus.30–33 In the radial axis, CA1 pyramidal 

cells whose soma is located deep in the layer (closer to the 

stratum oriens) are more strongly activated by local sensory 

cues and have their place fields in CR locations in heteroge

neous environments. Conversely, CA1 pyramidal cells whose 

soma is located more superficially in the layer (closer to stratum 

radiatum) are less activated by local sensory cues and have 

their place fields enriched in CP locations.12,21,33 Next, we 

asked how hippocampal distance coding maps onto this 

heterogeneity.

To decipher the anatomical distribution of cells along the CA1 

radial axis, we defined the middle of the CA1 pyramidal layer as 

the recording site where sharp-wave ripples had the largest 

amplitude.30,33 Cells above or below this threshold were classi

fied as deep or superficial, respectively (Figures S3A and S3B). 

We were able to record a large number of deep and superficial 

pyramidal cells when mice explored both CP and CR tracks 

(CP: 362 deep and 642 superficial cells, 14 sessions in 8 mice; 

CR: 122 deep and 246 superficial cells, 8 sessions in 3 mice). 

Overall, there was no difference in the propensity of deep and su

perficial cells to be active and spatially modulated in either CP or 

CR environments (Figures S3C and S3D).

We then compared distance coding of deep and superficial 

CA1 pyramidal cells in CP environments, focusing on bidirec

tional place cells (Figures 2A and 2B). The percentage of bidirec

tional cells among all place cells did not differ between deep and 

superficial pyramidal cells (Figure S3E). In the CP environment 

the majority of both deep and superficial cells had place fields 

at the same distance from the start of each journey (i.e., dis

tance-coding cells; deep: 87.5%; superficial: 90.7%, X2(2, n = 

67) = 1.83, p = 0.40, chi-square test). Accordingly, distance cod

ing indices were similarly high for both cell types (deep: 0.79 ± 

0.09; superficial: 0.91 ± 0.02; p = 0.15; Figure 2C). Thus, in the 

absence of salient local visual cues (3D objects), distance coding 

dominates in both deep and superficial bidirectional CA1 pyra

midal cells.

In the heterogeneous CR environment, however, the distance 

index of superficial cells was significantly higher than that of 

deep cells (superficial: 0.46 ± 0.07 and deep: 0.23 ± 0.08, p = 

0.03; Figure 2D). Furthermore, we observed a significant nega

tive correlation between cell body depth and distance index 

(R = − 0.22, p < 0.05, Pearson correlation; Figure 2E). Accord

ingly, in this track, the cue index was higher for deep cells 

(deep: 0.28 ± 0.09; superficial: − 0.05 ± 0.09, p = 0.04; 

Figure 2D), and the correlation between cell body depth and 

cue index was significantly positive (R = 0.22, p < 0.05, Pearson 

correlation; Figure 2E). When considering the superficial cell 

population, the proportion of distance-coding cells (55.0%) 

tended to be higher than the proportion of cue-dependent cod

ing cells (28.3%) but without reaching statistical significance. On 

the other hand, when considering the deep cell population, the 

proportion of distance coding (42.9%) and cue-dependent cod

ing (42.9%) cells was identical (X2(2, n = 95) = 2.11, p = 0.35, chi- 

squared test). For both deep and superficial place cells, while 

distance coding cells could be observed in both the CR and 

CP parts of the environment, cue-dependent coding cells tended 

to cluster in the CR part (Figure S3F).

These results demonstrate that in the absence of salient local 

visual cues, CA1sup and CA1deep are equally recruited for 

distance coding. However, in a heterogeneous track locally 

enriched with visual cues, CA1sup cells show a bias toward 

distance coding, while the coding of CA1deep cells is more 

cue-dependent.

Distance coding in unidirectional place cells and non- 

place cells

Distance coding dominates the activity of bidirectional place 

cells in the CP condition. What about unidirectional place cells, 

which have a place field when animals navigate in one but not 

the opposite direction7,28 and represent the majority of 

spatially modulated cells in linear tracks? In our recordings, 

unidirectional place cells fired at similar rates in both directions 

(p = 0.086), with the same spatial information (p = 0.37), but 

less reliably (p < 10− 4; Figure S4A). We therefore looked for 

traces of distance coding in these cells. Looking at the raster 

plots of individual cells, an increased firing rate was often 

observed in the opposite direction at the same distance as 

the place field from the start of the journey, reminiscent of dis

tance coding (Figure S4B). This was also evident when all 

place fields were plotted ordered by their location in the cod

ing direction (Figure S4C, left sorted) and compared with 
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locations associated with increased activity (dark blue) in the 

opposite direction (Figure S4C). To quantify this, we calculated 

the spatial correlation between the mean firing rate vectors in 

the two directions aligned to the start of each journey. The 

spatial correlation of unidirectional cells reached a mean value 

of 0.57 ± 0.02, significantly higher than a shuffled dataset (see 

STAR Methods; p < 10− 5; Figure S4D) but significantly lower 

than the spatial correlation in bidirectional cells (p < 10− 5). 

Non-place cells (with no place fields in any direction) also 

showed a spatial correlation significantly higher than shuffle 

(p < 10− 8), suggesting that some distance coding could also 

be detected within this population.

We conclude that in CP environments, distance coding can 

also be detected in unidirectional and non-place cells, suggest

ing a global coding at the population level.

Population analysis of hippocampal distance coding

Our previous results show that in the absence of local visual 

cues, distance coding dominates hippocampal place cell 

activity. Hippocampal distance coding is readily observable in 

bidirectional place cells, with place fields at the same distance 

from the start of each journey, but also in unidirectional place 

cells and non-place cells, suggesting a predominant distance 

coding at the population level. To better visualize the population 

dynamics in the CP track, we applied a nonlinear dimensionality 

reduction technique (uniform manifold approximation and pro

jection [UMAP]; see STAR Methods) to the spiking activity of 

all recorded active cells for each recording session in this condi

tion (Figure 3A). Projection onto a 2D plane revealed a cloud of 

points with an elongated shape (1D manifold), each point corre

sponding to a population vector summarizing hippocampal 

network activity at a given time (Figure 3A). Distance from the 

start of each journey is nicely mapped onto the coordinate of 

this manifold for a majority of recording sessions in this condition 

(Figure 3A), confirming the predominance of distance coding at 

the population level in the CP track. Several CA1 pyramidal cells 

showed consistently increased activity at restricted locations on 

the manifold reminiscent of the distribution of place cell activity 
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Figure 2. Distance and cue-dependent coding in deep and superficial pyramidal cells 

(A) Color-coded mean firing rate maps in the forth (left) and back (right) trials of deep (top) and superficial (bottom) bidirectional place cells recorded in the CP 

track. The color code represents the normalized mean firing rate in a given bin. Place cells are ordered according to the location of their peak firing rate in the forth 

direction (reward zones excluded). 

(B) Color-coded mean firing rate maps in the forth (left) and back (right) trials of deep (top) and superficial (bottom) bidirectional place cells recorded in the CR 

track. 

(C) Boxplots comparing the distance indices between deep and superficial cells in the CP track (Z = − 1.45, p = 0.15, WRS test). 

(D) Boxplots comparing distance index (left, Z = − 2.23, p = 0.03; WRS test) or cue index (right, Z = 2.09, p = 0.036, WRS test) between deep and superficial cells in 

the CR track. 

(E) Scatterplots of distance index (left) or cue index (right) in the CR track vs. Y-position in the cell layer (μm). 

See also Figure S3.
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along the CP track (Figure 3B). Indeed, there was a good corre

lation between the distance traveled by the animal from the start 

of each journey and the evolution of the population activity along 

the manifold (Figure 3C). The reduction of hippocampal activity 

onto a low-dimensional manifold is consistent with continuous 
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Figure 3. Population-level analysis of hip

pocampal distance coding 

(A) Example of UMAP of hippocampal activity 

during a recording session in the CP track, colored 

according to the distance with respect to the start 

of the lap (left) or the position (right). 

(B) Example of localized increase in activity sorted 

according to UMAP coordinate. 

(C) Correlation between distance from the start of 

the maze and UMAP coordinate (UMAP coord.) for 

several laps during the recording session in (A). 

(D) Left: firing rate (top, color coded) and firing 

cross correlation (bottom) between cell #28 and 

cell #46 during a single forward lap in the CP maze. 

Right: normalized average firing of cell #28 (black) 

and cell #46 (blue) for all laps in the forward (odd) 

and backward (even) directions. 

(E) Average firing rate of cell #28 (black) and cell 

#46 (blue) in the maze plotted against distance 

from the start (top) and corresponding cross-cor

relation (pink) and associated p values (green) for 

each distance lag (bottom). The thicker pink line 

identifies ranges of distance lags with p values 

lower than 0.001. The black bar locates a cluster of 

at least 10 significant adjacent lags. 

(F) Pairs of cells with significant cross-correlations 

for an example mouse, and only the cells involved 

in at least one selected pair are included. Color 

coding represents the distance lag (in cm) en

coded by each cell pair. 

(G) 2D multidimensional scaling dimensionality 

reduction applied to the distance matrix in (F). 

Note the linear trend consistent with the one- 

dimensional nature of the environment.

attractor dynamics. These dynamics 

could impose internal constraints on the 

neuronal activity of place cells, such as 

rigid distance relationships between 

place fields as described for grid 

cells.13,15,34 To test whether similar dy

namics might underlie relative distance 

coding, we looked for rigid distance rela

tionships between hippocampal firing 

across laps in the CP condition. Despite 

the large intertrial spatial variability of 

place fields in this condition,27 spatial 

cross-correlation analyses revealed that 

a significant fraction of cell pairs main

tained a fixed distance between their 

place fields across laps (Figures 3D and 

3E). The correlation matrix showed that 

short distances between place fields 

(in the range of 10–20 cm) were overrep

resented (Figure 3F). A 2D multidimen

sional scaling on the distance matrix 

showed that spatial shifts formed a mostly linear representation 

compatible with an underlying 1D manifold (Figure 3G), consis

tent with the UMAP analysis.

Population-level analysis therefore confirms that distance 

coding dominates hippocampal activity at the population level 
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Figure 4. Hippocampal distance coding is altered under MS inactivation 

(A) Color-coded mean firing rate maps in the forth (left) and back (right) trials of bidirectional cells recorded before (top, dark blue) and after (bottom, light blue) the 

muscimol infusion in the CP track. The color codes represent the intensity of the mean firing rate of the place cell, normalized to the maximum mean firing rate 

(peak rate) in each direction. Place cells in both directions are ordered according to the location of their peak rate in the forth trials (reward zones excluded). 

(B) Left: boxplot of the percentage of bidirectional place cells recorded in the CP track before and during the MS inactivation. Right: mean percentage of 

bidirectional place cells before and during MS inactivation for each recording session with at least 4 place cells, t(6) = 4.75, p = 0.0032, paired t test. 

(C) Boxplots of relative change (=number of cells after minus number of cells before, divided by number of cells before) of bidirectional (left, p = 0.016, n = 7 

Wilcoxon signed-rank or WSR test) and unidirectional (right, t(6) = − 0.69, p = 0.51, one-sample t test) place cells. The relative change for the bidirectional cells was 

significantly different from the one for unidirectional cells (p = 0.0156, n = 7, WSR test). 

(D) Boxplot of relative change for active non-place cells, t(6) = 0.95, p = 0.38, one-sample t test. 

(E) Population vector correlations of bidirectional place cells’ activity in the CP track (reward zones excluded) between back-and-forth directions before (left) and 

during (right) MS inactivation. For each axis, the arrows indicate the trial direction (solid red: forward trials; dashed red: backward trials). The intensity of the 

correlation is color coded from highest (yellow) to lowest (blue). The yellow diagonal indicates strong distance coding prior to MS inactivation. During MS 

inactivation, high correlations were lost in the middle part of the track. 

(F) Population vector matrices showing bins of correlation above the 99th percentile threshold of the shuffled data before (left) and during (right) MS inactivation. 

(legend continued on next page) 
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and could result from attractor dynamics imposing rigid distance 

relationships.

MS inactivation alters hippocampal distance coding

Our previous results show that distance coding dominates CA1 

pyramidal cells’ activity in the CP track. At the population level, 

the mapping of distance coding onto a 1D dimensional manifold 

is compatible with attractor dynamics. Accordingly, we 

observed that the activity of a majority of cells is tuned to the 

1D manifold coordinate and shows a rigid distance relationship 

across trials. These properties are reminiscent of grid cell activ

ity, which also lies on a low-dimensional manifold that imposes 

rigid distance relationships between grid fields of different cells.

The spatial organization of grid cell firing fields, which is 

thought to support path integration, is altered by MS inactiva

tion.17,18 We next tested the impact of MS inactivation on hippo

campal distance coding in the CP environment. Hippocampal 

neuronal activity was first recorded while mice performed 

back-and-forth trials in a familiar CP environment (at least 20 tri

als). We then inactivated the MS by micro-infusion of muscimol, 

an agonist of GABAA receptors (see STAR Methods). Muscimol 

infusion drastically reduced the power of theta oscillations re

corded in the hippocampus during locomotion (by 83.7% ± 

4.1%; p < 10− 8 vs. infusion of artificial cerebrospinal fluid, or 

aCSF; Figures S5A–S5D). The performance of the mice in the 

task was slightly but significantly reduced under MS inactivation 

(rewards/min: 3.59 ± 0.72 before and 3.28 ± 0.72 after, t(6) = 2.65, 

p = 0.038, paired t test). There was no significant change in the 

average velocity (excluding stops) before and after muscimol 

(p = 0.81; Figure S5E), but animals tended to make more stops 

per trial after the infusion (p = 0.06; Figure S5F, left). However, 

this was likely due to the length of the entire procedure (see 

STAR Methods) rather than the injection of muscimol per se, 

as a similar increase was observed after injection of aCSF 

(p < 0.01; Figure S5F, right).

The total number of pyramidal cells recorded before and dur

ing the MS inactivation was 495 and 500, respectively (n = 7 

recording sessions in 5 mice). As expected,17,18 muscimol infu

sion in the MS significantly decreased the firing rate of active 

cells (Figure S5G). However, the proportion of active pyramidal 

cells was not different before and after muscimol (67.5% ± 

5.1% and 61.4% ± 1.8%, respectively, p = 0.26; Figure S5H, 

left). The proportion of place cells among active cells was also 

similar (32.4% ± 4.4% and 21.2% ± 2.9%, respectively, p = 

0.10; Figure S5H, right). Spatial information (Figure S5I) was 

mostly preserved under muscimol with no significant change de

tected (0.26 ± 0.03 bit/spike before and 0.25 ± 0.04 bit/spike af

ter, p = 0.99) as well as out/in field firing ratio (0.50 ± 0.02 before 

and 0.53 ± 0.03 after, p = 0.20; Figure S5I). However, place cells 

were less stable after MS inactivation (0.24 ± 0.01 before and 

0.13 ± 0.01 after, p < 10− 8; Figure S5I). Altogether, we concluded 

that cells are less active and stable under MS inactivation even if 

no difference was observed in terms of spatial information.

We then asked whether MS inactivation could alter hippocam

pal distance coding in the CP track. We indeed observed a 

drastic decrease in the number of distance-coding bidirectional 

place cells under MS inactivation (from 38 before to 5 after MS 

inactivation; 86.8% decrease; Figure 4A). This loss of bidirec

tional distance coding place cells under MS inactivation also 

reached significance on a session-by-session analysis (p = 

0.0032; Figure 4B). In comparison, the total number of unidirec

tional cells decreased less (by 21.4%; 70–55 during the MS inac

tivation). We next compared the percentages of bidirectional and 

unidirectional cells, calculated from the total number of place 

cells, before and after the muscimol infusion. Before MS inacti

vation, 35.2% of place cells were bidirectional and 64.8% were 

unidirectional, whereas after MS inactivation, only 8.3% of place 

cells were bidirectional and the remaining 91.7% were unidirec

tional (X2(1, n = 168) = 14.6, p < 10− 3, chi-squared test; 

Figure 4B). To further estimate the effects of MS inactivation 

on bidirectional and unidirectional place cells, we calculated 

their relative change (Nafter − Nbefore)/Nbefore. For bidirectional 

place cells, the relative change was close to − 1 and significantly 

different from 0, indicating a strong decrease during MS inactiva

tion (mean: − 0.88 ± 0.06, p = 0.02; Figure 4C). The relative 

change was, however, not significantly different from 0 for unidi

rectional cells (mean: − 0.09 ± 0.13, p = 0.51; Figure 4C) and 

significantly different than bidirectional cells (p = 0.016; 

Figure 4C). Since most of the active cells are non-place cells in 

the CP track, we also examined the effects on MS inactivation 

on this category of cells. The relative change for non-place cells 

was not significantly different from 0 (mean: 0.18 ± 0.19, p = 0.38; 

Figure 4D). To assess whether the decrease of mean firing rate 

observed under muscimol could influence our results, we per

formed a subsampling of the number of spikes of place cells 

before injection (see STAR Methods). With this subsampling, 

place cells’ firing rate was not significantly decreased by musci

mol injection (Z = − 0.066, p = 0.95, WRS test), yet the decrease 

of bidirectional place cells was still significant (t(6) = 2.53, p = 

0.045, paired t test), as well as their relative change (t(5) = 

− 2.64, p = 0.046, one-sample t test), unlike the relative change 

of unidirectional place cells (t(5) = 2.03, p = 0.09, one-sample t 

test). Finally, the relative change of bidirectional place cells 

was significantly different and lower than the relative change of 

unidirectional place cells (t(11) = − 2.71, p = 0.02, two-sample t 

test). Taken together, our results indicate that, in the CP track, 

MS inactivation strongly decreases the percentage of dis

tance-coding bidirectional place cells.

(G) Distance overlap of bidirectional place cells in 8 parts of the track in the CP track before (dark blue) and during (light blue) MS inactivation. Distance overlap 

decreased significantly under muscimol inactivation in the center of the maze between 60 and 120 cm (60–80 cm: Z = 3.99, p < 10− 4; 80–100 cm: Z = 4.01, 

p < 10− 4; 100–120 cm: Z = 4.04, p < 10− 4, WRS test). 

(H) Boxplots of the spatial correlation between the forth and back trials (aligned to the starting point) before and after muscimol infusion in the MS for the uni

directional cells. SH indicates the shuffle value (random pairs of cells for the back-and-forth trials). Spatial correlations decreased significantly after the muscimol 

infusion (H(2) = 81.3, p < 10− 17, Kruskal-Wallis, before vs. after p < 10− 4, SH vs. after p = 0.013, multiple comparison). 

(I) Same as (H) for the non-place cells. Spatial correlations decreased significantly after the muscimol infusion (H(2) = 92.4, p < 10− 20, before vs. after p < 10− 8, SH 

vs. after p = 0.035, multiple comparison). 

See also Figure S5.
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We then asked whether bidirectional and unidirectional place 

cells remaining under MS inactivation still performed distance 

coding. The five bidirectional place cells remaining after MS 

inactivation had a mean distance index of 0.92 ± 0.009, which 

was not significantly different from the distance index of the 38 

bidirectional cells recorded before inactivation (0.89 ± 0.02, 

Z = 0.27, p = 0.79, WRS test). However, while the place fields 

of bidirectional place cells were distributed in all parts of the 

track before inactivation, the place fields of place cells remaining 

under MS inactivation had their place fields almost exclusively 

near to the track ends, leaving the central part of the track not 

coded (Figure 4A). To quantify this, we performed population 

vector overlap analysis (see STAR Methods) (Figure 4E). While 

a diagonal of high correlation corresponding to distance coding 

was observed in all parts of the track (albeit somewhat weaker in 

the middle) before MS inactivation, high correlations were lost in 

the middle of the track and only visible at the beginning and end 

of the track after inactivation. Comparison with shuffled data 

yielded similar results (Figure 4F). We also calculated a distance 

overlap index (Figure 4G), which quantifies the overlap of place 

fields in both directions when aligned to the start of each journey. 

Distance overlap decreased significantly under muscimol inacti

vation in the center of the maze between 60 and 120 cm (60– 

80 cm: p < 10− 4; 80–100 cm: p < 10− 4; 100–120 cm: p < 10− 4, 

WRS test). We conclude that distance coding is strongly reduced 

after MS inactivation, notably in the center of the track.

These effects were not explained by the infusion procedure, as 

aCSF-injected animals showed no reduction in bidirectional cell 

number (before aCSF: 51 cells representing 33.1% of place cells; 

after aCSF: 53 cells representing 31.7% of place cells) and no 

impairment in distance coding along the track (Figures S6A– 
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Figure 5. Impact of MS inactivation on hip

pocampal distance coding at the popula

tion level 

(A) Example of UMAP after muscimol injection, 

colored according to distance from the start of 

the lap. 

(B) Correlation coefficient between UMAP co

ordinates and distance from the start of each lap 

before (Bef.) and after (Aft.) muscimol injection. 

The column (Rand.) shows the correlation be

tween UMAP coordinates and distance for lap-by- 

lap random shuffling of spikes. The last column 

shows the correlation between UMAP co

ordinates and absolute position in the maze (Pos.). 

(C) Same as (B) but for aCSF injection. 

(D) Fraction of cell pairs with significant distance 

lag before (No Drug) and after injection of aCSF or 

muscimol or when cell identity is randomized 

(Rand.).

S6C). Indeed, population vector analysis 

revealed a clear diagonal corresponding 

to distance coding in all parts of the 

track after aCSF injection (Figures S6D 

and S6E), and distance overlap analysis 

revealed no decrease but rather an 

increased overlap after aCSF injection 

(Figure S6F).

Given that distance coding is observed globally at the popula

tion level in the CP track, including in unidirectional place cells 

and non-place cells, we next asked whether distance coding 

was also affected by MS inactivation in these cells. We per

formed spatial correlations between back-and-forth trials 

aligned to the starting point. For both unidirectional (Figure 4H) 

and non-place cells (Figure 4I), spatial correlations decreased 

significantly after the muscimol infusion (unidirectional: 

p < 10− 17; before vs. after p < 10− 4; non-place: p < 10− 20; before 

vs. after p < 10− 8). However, for both cell populations, spatial 

correlations under muscimol remained significantly higher than 

the shuffled values (unidirectional: p = 0.013; non-place cells: 

p = 0.035), suggesting that some distance coding remained 

even after MS inactivation. Taken together, these results show 

that MS inactivation induces a global decrease in hippocampal 

distance coding.

To further investigate the effect of MS inactivation on hippo

campal population dynamics in the CP track, we compared 

low-dimensional manifolds before and after muscimol injection 

(Figure 5). After muscimol injection, the distance from the start 

of each journey was less accurately mapped onto the low- 

dimensional manifold than before (r = 0.51 before vs. 0.36 after, 

p = 0.165; WRS test; Figures 5A and 5B), whereas such a ten

dency was not observed after aCSF injection (r = 0.38 before 

vs. 0.39 after, p = 0.96; WRS test; Figure 5C). However, the map

ping of distance along the manifold under muscimol was signif

icantly higher than after shuffling (see STAR Methods) and signif

icantly higher than the mapping of position before muscimol 

(Figures 5B and 5C). To decipher whether the lower mapping 

of distance onto the manifold under muscimol could be related 

to an alteration of the attractor dynamics in the network, we 
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next compared the fraction of cell pairs showing rigid distance 

relationships between their firing profiles across laps before 

and after MS inactivation. After muscimol injection, this fraction 

was significantly reduced (from 0.104 to 0.058, p = 0.004, two- 

sample Kolmogorov-Smirnov test; Figure 5D), but still signifi

cantly higher than the fraction observed with randomly shuffled 

spike trains (0.104 and 3.6 × 10− 4, p < 10− 8, two-sample 

Kolmogorov-Smirnov test; Figure 5D). Such a reduction was 

not observed after aCSF injections (0.104 and 0.109, p = 0.36, 

two-sample Kolmogorov-Smirnov test; Figure 5D).

Taken together, these results suggest that the attractor is not 

abolished under MS inactivation, even if the reduced fraction of 

cells with a rigid distance relationship suggests some alteration.

Cue-dependent coding in the CR track under MS 

inactivation

Finally, we wondered whether cue-dependent coding could be 

observed under MS inactivation. To test this, 4 mice (5 

recording sessions) that were trained and recorded in the CP 

track before and after MS inactivation were exposed to the 

CR condition with the addition of two virtual 3D objects in the 

track immediately after the last session in the familiar CP track 

under MS inactivation (Figure 6A). First, we verified that the MS 

was still inactivated by quantifying the theta power during 

exploration of the CR track. Indeed, the attenuation of theta po

wer in this condition was 81.8% ± 9.6% (not significantly 

different from the 77.9% ± 4.5% attenuation before object in

clusion; p = 0.31, n = 5, Wilcoxon signed-rank [WSR] test). 

We next compared the number of bidirectional cells before 

MS inactivation, after MS inactivation, and after 3D virtual ob

ject addition under MS inactivation (Figure 6A). The number 

of bidirectional cells that had decreased from 20 to 6 in the 

CP track after muscimol injection (70% decrease) increased 

to 16 after object addition (CR under muscimol; 167% in

crease). Object addition also increased the number of bidirec

tional cells in a control group of 4 mice (9 recording sessions) 

that were subjected to the exact same protocol except that 

aCSF was injected in the MS instead of muscimol (CR aCSF; 

n = 36 before and n = 68 after, 89% increase; Figure S6A).

In the CR track under muscimol, most bidirectional cells had 

their place fields in the CR part of the track (Figure 6A), suggest

ing cue-dependent coding. To quantify this, we compared the 

cue index between the two groups (Figure 6B). The cue index 

was significantly higher in the CR track under muscimol (mean 

of 0.43 ± 0.16) than under aCSF (mean of − 0.07 ± 0.09, p = 

0.0068). By contrast, the distance index was significantly lower 

under muscimol (mean: 0.01 ± 0.13) compared with aCSF 

(mean: 0.54 ± 0.06, p = 0.0011; Figure 6C).

Finally, we analyzed the percentage of bidirectional cells pref

erentially showing distance or cue-dependent coding in the 

different conditions. In the CP track prior to MS infusion, a similar 

proportion of bidirectional place cells were coding for distance in 

both groups (aCSF: 83.3%; muscimol: 95.0%; groups (p = 0.40; 

Figure 6D). By contrast, the percentage of distance-coding bidi

rectional place cells was lower in the muscimol group (25%) than 

in the aCSF group (57.1%). In the CR condition under muscimol, 

the percentage of bidirectional cells performing cue-dependent 

coding was significantly higher (75%) than in the aCSF group 

(24.7%) (p < 10− 3; Figure 6D). These results therefore show 

that cue-dependent coding can be observed when local cues 

are added to the CP track under MS inactivation.

DISCUSSION

In the course of navigation, animals can locate themselves using 

a set of external sensory cues, but they can also use self-motion 

cues by integrating the distance traveled in specific directions 

over time (path integration-based distance coding).1,5 Idiothetic 

distance coding based on self-motion cues is more likely to be 

observed when access to external sensory cues is reduced 

(when moving in darkness or away from boundaries or 

landmarks)8,19,21,35 or when these are unreliable.36 Idiothetic dis

tance coding has been largely understudied, despite both exper

imental and theoretical work suggesting that it may be a prereq

uisite for hippocampal allocentric coding.37 Here, we used virtual 

reality for rodents and focused on bidirectional place cells to 

isolate and characterize hippocampal distance coding.

Sensory determinants of hippocampal distance coding

We observed pervasive distance coding in both bidirectional and 

unidirectional place cells in the CP track. This coding scheme 

was most clearly observed at the population level, as evidenced 

by a diagonal of high correlation for corresponding distances in 

the population vector correlation analysis and the mapping of 

distance along a 1D manifold following dimensionality reduction 

analyses. However, a potential limitation of our virtual reality 

approach is that the virtual scene is passively reversed at the 

end of the track, and head-fixed animals must rely exclusively 

on visual cues to detect direction changes, which could favor 

distance coding. In the CP track, these correspond to a left-right 

switch of the patterns on the walls together with a positional 

switch of the end track cue from front to back. Nevertheless, 

several arguments suggest that the distance coding we 

observed is genuine. First, in the CP track, the density of place 

fields quickly decreased as the animals moved away from the 

start of each journey and the distinctive cue card present there. 

This is consistent with degraded spatial coding based on the 

accumulation of errors inherent to path integration. A similar 

decrease in place field density was observed in mice navigating 

a CP, treadmill-based environment in the dark when the mice 

moved away from localized odor cues.35 Second, our dimen

sionality reduction analysis, which was independent of place 

field detection, revealed a low-dimensional manifold onto which 

the distance traveled from the start of each journey could be 

mapped. Lastly, MS inactivation selectively altered distance 

coding in both CR and CP conditions. Our results further show 

that in the presence of salient local visual cues, a cue-dependent 

place cell coding could be observed in CR virtual environments. 

While distance coding was expressed in both CR and CP parts of 

the CR environment, cue-dependent coding tended to occur 

preferentially in the part enriched with virtual 3D objects. This 

finding complements previous studies in rats showing that distal 

visual cues alone are not sufficient to promote cue-dependent 

coding in virtual environments.7,38,39 Conversely, when a salient 

local cue (such as the wall at the end of the track) is made 

spatially unstable, distance coding can be observed even in 

real environments.36 However, more sophisticated analytical ap

proaches may be required to isolate idiothetic coding in 
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Figure 6. Cue-dependent coding in the CR track under MS inactivation 

(A) Color-coded mean firing rate maps in the forth (left) and back (right) trials of bidirectional cells recorded before (top, dark blue) and after (middle, light blue) 

muscimol injection in the MS in the CP track and under MS inactivation in the CR track following object addition (bottom, orange). The color codes for the intensity 

of the bin’s mean firing rate normalized on the maximal mean firing rate (peak rate) in each direction. The place cells are ordered according to the location of their 

peak rate in the track for all forth trials (reward zones excluded). 

(B) Boxplot of the cue index in bidirectional cells recorded in the CR track of control mice (full orange) or muscimol mice (dotted orange), Z = − 2.71; p = 0.0068, 

WRS test. 

(C) Boxplot of the distance index in bidirectional cells recorded in CR of control mice (full orange) or muscimol mice (dotted orange), Z = 3.27; p = 0.0011, WRS 

test. 

(D) Scatterplots of distance index against cue index for each bidirectional cell recorded before muscimol injection in the CP track (top), under muscimol infusion in 

CR (middle) or after aCSF injection in CR (bottom). For each track condition, cells exhibiting cue-dependent or distance coding are identified by a violet or green 

box, respectively. The percentages of bidirectional cells showing predominant distance or cue-dependent coding are also indicated on the plots. In the CP track 

prior to MS infusion, a similar proportion of bidirectional place cells were coding for distance in both groups (X2(2, n = 63) = 1.83, p = 0.40, chi-squared test). In the 

CR condition under muscimol, the percentage of bidirectional cells performing cue-dependent coding was significantly higher than in the aCSF group (X2(2, n = 

93) = 15.6, p < 10− 3, chi-squared test). 

See also Figure S6.
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real-world settings.40 Distance coding can also be observed 

when external sensory cues are decoupled from self-motion 

cues41,42 or dampened in the absence of specific task structure 

or reward.8 In this latter case, the activity of a small fraction of 

hippocampal cells (∼5%) formed recurrent distance sequences 

spanning a fixed distance unit. This minority-based distance 

coding contrasts with the global distance coding we observed, 

in which most hippocampal neurons were involved and the 

sequence spanned the entire environment. The difference may 

be due to the fact that in our study, unlike the above study, the 

animals are engaged in a task with specific environmental and 

task-related boundaries. Further work will be needed to decipher 

whether this minority-based coding forms a fundamental back

bone upon which the more global distance coding we observed 

could be built.

Distance coding and CA1 pyramidal cell heterogeneity

CA1 pyramidal cells are morphologically and functionally hetero

geneous along the dorsoventral, transverse, and radial axes. 

Part of this heterogeneity is rooted in neurodevelopment.43,44

This heterogeneity is best characterized along the radial axis. 

During spatial exploration, CA1 pyramidal cells located deep in 

the layer (CA1 deep, near stratum oriens) have a greater ten

dency to be place cells within and across environments, whereas 

CA1sup cells tend to fire more sparsely in a context-specific 

manner.45,46 Furthermore, CA1deep cells tend to be active in 

CR parts of heterogeneous environments, while CA1sup cells 

tend to be active in CP parts away from landmarks.12,21 Consis

tent with this, we observed an increased propensity of CA1deep 

cells to perform cue-dependent coding and CA1sup cells to 

perform distance coding in our heterogeneous CR environment. 

In the CP track, however, both CA1deep and CA1sup cells per

formed distance coding in similar proportions, with similarly high 

distance coding indices. Furthermore, the proportion of place 

cells among active cells did not differ between CA1deep and 

CA1sup cells in the CP environment.

These results show for the first time that, despite important dif

ferences in morpho-functional properties and connectivity, both 

CA1deep and CA1sup cells can be equally recruited to code dis

tance in CP environments. These results seem a priori inconsis

tent with previous work showing that CA1deep cells behave as 

landmark vector cells, systematically discharging next to 

external landmarks on a cued treadmill, whereas CA1sup cells 

can be activated away from external landmarks.33 According 

to this work, CA1deep cells would be primarily driven by external 

sensory cues, whereas CA1sup cells would be preferentially 

driven by self-motion or idiothetic cues. However, in our study, 

both cell types were equally recruited in the CP track. One pos

sibility is that both cell types perform distance coding, but on the 

basis of different sensory cues. While CA1deep cells would code 

distance with respect to an external landmark, such as the end of 

the track, CA1sup cells would use self-motion or idiothetic cues 

to code distance based on path integration. However, if this was 

the case, CA1deep cells would preferentially code at the ends of 

the path where a cue is visible, whereas CA1sup cells would 

preferentially code at the beginning of the path before error 

accumulation would prevent distance coding based on path 

integration.35 However, CA1deep cells were active from the 

beginning of the track, while CA1sup cells were also active at 

the end of the track. Alternatively, both CA1deep and CA1sup 

cells could be activated by default based on self-motion cues, 

but when present, external sensory cues could take control 

over CA1deep cells (but not CA1sup cells), favoring cue-depen

dent coding. How distance- and cue-dependent coding map 

onto cellular heterogeneity in other hippocampal areas remains 

to be investigated.47

Attractor dynamics and hippocampal distance coding

Contrary to place field analysis, dimensionality reduction does 

not explicitly refer to behavioral variables. In particular, it allows 

highlighting relative distance coding along the track. Dimension

ality reduction analyses applied to hippocampal coding at the 

population level in the CP track revealed a 1D manifold. Distance 

traveled along the track mapped well onto this manifold. Indeed, 

there was a good correlation between the evolution of population 

activity along the manifold and the distance traveled by the ani

mal along the maze. The observation of this manifold is compat

ible with an underlying CAN that could exert some constraints on 

hippocampal neuronal dynamics. In line with this, correlation 

analysis revealed rigid distance relationships between the place 

fields of co-recorded place cells across trials despite large inter

trial variability of individual place fields. However, the stability of 

these distance relationships across different behavioral states 

(e.g., between awake and sleeping states) remains to be tested. 

Rather than directly emerging from the CA1 network, these at

tractor dynamics could be inherited from the grid cell network. 

Indeed, the population activity of grid cells also lies on a low- 

dimensional manifold,15 imposing rigidity in the correlation struc

ture of their activity.13,34 Furthermore, grid cells discharge at 

fixed distances in 1D environments16,48 and are more influenced 

by self-motion-related information than visual information during 

gain changes in virtual environments.49,50

MS inactivation alters distance coding

Consistent with a role for grid cells in hippocampal distance cod

ing, MS inactivation, which disrupts the spatial organization of 

grid cell discharge17,18 and distance estimation based on path 

integration,20 strongly reduced distance coding in the absence 

of local visual cues, with a significant reduction in the number 

of bidirectional distance-coding cells. Population vector analysis 

further confirmed a significant loss of distance overlap, particu

larly in the center of the path. These deficits were not observed 

when aCSF was injected into the MS as a control. Accordingly, 

we observed a decrease in the correlation between the evolution 

of population activity along the manifold and the distance trav

eled by the animal along the maze, together with a loss of rigidity 

in the distance relationship between place fields across laps. It is 

worth noting that although distance mapping along the manifold 

and correlation structure of hippocampal population activity 

were reduced under MS inactivation, they were still higher than 

when spiking was shuffled. This suggests that the underlying 

CAN structure may be preserved. Interestingly, similar differ

ences between coding in physical and manifold spaces have 

been observed for grid cells.15 For example, grid cells retain 

some distance coding properties, and the correlation structure 

of their activity is preserved even when the grid pattern is lost 

in the dark24,25 or after hippocampal inactivation.51 Collectively, 

these results suggest that grid cell activity could sustain 
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hippocampal distance coding in the absence of local visual cues 

and that MS inactivation would more specifically alter the map

ping of distance onto the manifold rather than the underlying at

tractor dynamics.

The few bidirectional distance-coding cells that remained un

der MS inactivation were active at the start or end of the track, 

suggesting that they used allothetic cues (the track ends) rather 

than idiothetic cues to encode distance. This intuition was 

confirmed by population vector analysis, which showed that 

some distance overlap remained at the start and end of the 

track. These end-of-track cues could be used to anchor the 

grid in the control condition, allowing accurate path integra

tion-based navigation and hippocampal distance coding.52,53

Such anchoring could be lost under MS inactivation, thus pre

cluding accurate distance coding along the track while poten

tially preserving path-integrated distance coding along the 

manifold. When local visual cues (virtual 3D objects) were intro

duced into the CP track under MS inactivation, some cue- 

dependent coding cells could be recorded in the CR part of 

the track. This is consistent with behavioral results showing 

that grid cell anchoring to the track is not required for cue- 

dependent navigation.20

Previous studies have reported various effects of MS inacti

vation on place cell coding in real-world environments. While 

place cell coding was observed in small-scale 2D and 1D envi

ronments under MS inactivation,18,19 hippocampal coding was 

selectively altered when animals ran in a wheel during a spatial 

working memory task or away from external sensory 

cues.19,21,54 In addition to altering grid cell firing, the effects 

of MS inactivation on hippocampal distance coding could result 

from altered theta rhythmicity and theta-driven dynamics of 

internally organized hippocampal networks, such as theta se

quences. Indeed, a computer model has shown that self-mo

tion-based firing fields can be built from theta sequences in 

the absence of external sensory cues.19 However, we and 

others have previously shown that theta phase precession 

and theta phase spike coordination are altered in the CP con

dition even without MS septal inactivation.12,27 Collectively, 

these results suggest that theta sequences are dispensable 

for distance-coding firing fields but may be selectively involved 

in internally generated firing fields in the context of working 

memory. Finally, while average trial speed was not significantly 

affected by MS inactivation, the number of stops per trial was 

increased after compared with before MS inactivation. This 

could be due to direct inhibition of MS glutamatergic neurons, 

whose activity has been directly linked to locomotor speed.55

Part of this increase could also be related to a decrease in 

motivation for reward at late stages of the recording session 

when spatial coding is assessed under MS inactivation. In 

line with this, the number of stops was also increased at simi

larly late stages of the experimental protocol after control aCSF 

injections. Although the impact of behavior on hippocampal dy

namics is difficult to disentangle from the impact of hippocam

pal dynamics on behavior, the increased number of stops 

following aCSF injections did not prevent clear distance coding 

in this condition. Conversely, altered hippocampal distance 

coding and path integration-based self-localization deficits 

could also contribute to the increased number of stops 

observed after MS inactivation.

Conclusions

Despite years of investigation, the specific determinants of hip

pocampal distance coding are unclear.1 Using virtual reality 

and local cue manipulations, we could isolate distance coding 

and investigate its cellular and network determinants. We 

showed that distance coding is ubiquitous in the hippocampus 

in the absence of local visual cues, involving both CA1deep 

and CA1sup cells as well as unidirectional and non-place cells. 

In this condition, the distance traveled along the track could be 

mapped onto a low-dimensional manifold imposing rigid dis

tance relationships between place fields. This is reminiscent of 

attractor dynamics observed in the grid cell network. MS inacti

vation, which alters the firing pattern of grid cells, dampened dis

tance coding at the single-cell level and rigid distance relation

ships at the population level. However, a cue-dependent form 

of place cell coding could still be observed under MS inactivation 

in the presence of local visual cues. Based on these results, we 

propose a specific role for grid cells in maintaining hippocampal 

distance coding in cue-impoverished conditions.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Data were collected from 16 male mice C57BL/6J (Janvier/Charles River) between 8 and 12 weeks of age during the recording phase 

(weight: 21–23.6 g). Mice were housed in groups of two or three per cage prior to the first surgery and then individually housed on a 

12-hour inverted light/dark cycle. Training and recording were performed during the dark phase. All experiments were approved by 

the Animal Care and Use Committee of the Institut National de la Santé et de la Recherche Médicale (INSERM) and authorized by the 

Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche after evaluation by a local ethics committee 

(agreement number 02048.02), in accordance with the European Community Council Directives (2010/63/UE).

METHOD DETAILS

Surgical procedure to prepare head fixation and cannula implantation

Animals were maintained under isoflurane anesthesia supplemented with a subcutaneous injection of buprenorphine (0.1 mg/kg) 

throughout the surgical procedure. Two jeweler’s screws were inserted into the skull above the cerebellum for reference 

and grounding. For muscimol infusion in the MS, a guide cannula (26G, Dominique Dutscher) was implanted 1 mm above the MS 

(AP: +1 mm, ML: +0.7 mm, DV: -3 mm, angle 10◦ towards the midline). A dental cement cap was then constructed, leaving the skull 

free above the hippocampi for later craniotomies. The exposed skull was sealed with silicone elastomer (Kwik-Cast, World Precision 

Instruments). A small titanium rod (0.65 g; 12 x 6 mm) was inserted above the cerebellum to serve as a fixation point for a larger head 

plate, which was used for head fixation only during training and recording. After surgery, buprenorphine (0.1 mg/kg) was administered 

twice daily for 3 days. Mice were allowed to recover for 5 days before behavioral training began.

Virtual reality set up

A commercially available virtual reality system (Phenosys Jetball TFT) was combined with a custom-designed, 3D-printed, concave 

plastic wheel (center diameter: 12.5 cm; side diameter: 7.5 cm; width: 14 cm, covered with a white silicon-based coating) to provide 

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Muscimol powder 5mg Sigma-Aldrich Cat# M1523-5MG

Artificial cerebrospinal fluid (aCSF) Harvard-Apparatus Cat# 59-7316

Vybrant™ DiI Cell-Labeling Solution Thermo Fisher Scientific Cat# V22885

Kwik-Cast low toxicity silicone sealant World Precision Instruments Cat# KWIK-CAST

Antigenfix Diapath France Cat# P0014/U

Fluoromount-G mounting medium with DAPI Thermo Fisher Scientific Cat# 00-4959-52

Deposited data

UMAP codes This paper https://gitlab.com/rouault-team-public/ 

nordlund_et_al

Experimental models: Organisms/strains

C57BL/6J mice Charles Rivers & Janvier Laboratories (France) N/A

Software and algorithms

Matlab The Mathworks 2018

Klustakwik http://klusta-team.github.io/klustakwik/ V3.0

Other

Stainless steel tube (26 Gauge, 13mm) Hamilton Company Cat# SS304 - 21026

Stainless steel tube (32 Gauge, 33mm) Hamilton Company Cat# SS304 - 21032

Phenosys Jetball-TFT Phenosys N/A

Buzsaki Silicon probes Neuronexus Cat# A-32 & A-64

Acquisition system Open Ephys N/A

Channel recording headstage Intan Cat# RHD-32

Fusion 100 Infusion pump Chemyx N/A
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1D motion with a 1/1 coupling between the movement of the mouse on the wheel and the movement of its avatar in the virtual reality 

environment. The wheel was surrounded by six 19" TFT monitors covering a total angle of 270 degrees. The monitors were elevated 

so that the mouse’s eye level corresponded to the bottom third of the screen height to account for the fact that the rodent’s field of 

view is upwardly biased. The head restraint system (Luigs and Neumann) was placed behind the animal so as not to interfere with the 

view of the virtual reality environment. The virtual reality environment was a 200 cm long and 32 cm wide virtual linear maze with 

different patterns on the side and end walls, enriched or not with virtual 3D objects (see virtual reality environments section). The 

movement of the wheel updated the position of the mouse avatar in the environment. The mouse could only move forward or back

ward, but could not turn back in the middle of the path (see Training section).

Virtual reality environments

Cue-poor track

Each side wall had a unique pattern (black and orange stripes on one wall; green crosses on a black background on the other). End 

walls had gray triangular or round shapes on a yellow background.

Cue-rich track

This maze was identical to the cue-poor track in terms of wall patterns and dimensions, but two or three virtual objects were placed on 

the sides between the animal’s path and the walls. The objects were a yellow origami crane (dimensions: 9 x 9 x 7 cm; position: 37 cm 

from end wall), a blue and gray cube (dimensions: 5 x 5 x 5 cm; position: 64 cm from end wall), and a tree (15 x 15 x 22 cm; position: 

175 cm from end wall). The animal could neither orient to the objects nor receive any sensory feedback from them other than vision. 3 

mice used in this study (6 recording sessions) were trained and recorded in a virtual linear track enriched with 2 virtual objects 

(origami + cube). An additional mouse trained and recorded in a track enriched with 3 objects was added to the study. The results 

of this animal were already used in a previous study.27 For the experiments in which animals were first trained in the track without 

objects and then exposed to a novel environment with objects, the track with 2 objects was used.

Training

Mice were first habituated to the experimenter by daily handling sessions of 20 min or more, which continued throughout the 

experiment. After a 5-day recovery period following surgery, mice were water-deprived (1 ml/day, including the amount of water 

consumed during training). They were then progressively trained to run in the virtual reality setup. First, mice were familiarized with 

running head-fixed on the wheel for water rewards in a black track (screens always black). During these sessions, animals 

received sweetened water (5% sucrose) as a reward for every 50 cm run on the wheel. When the animals were familiar with 

the setup, they were trained to run in a 200 cm long linear virtual track (familiar track). When animals reached the end of the track, 

a liquid reward delivery tube extended in front of the animal and the animal had to lick to obtain the reward (a 4 μL drop of water 

containing 5% sucrose). Animals were then teleported to the same position but in the opposite direction of the maze and had to 

run in the opposite direction to the end of the maze to receive another reward. Animals were trained until they were able to com

plete at least 60 trials. Ad libitum access to water was restored if the animal’s weight dropped below 80% of its preoperative 

weight at any time during training.

Recording procedure

When animals reached a stable behavioral performance (at least two rewards/minute and 60 trials; cue-rich: 4.38 ± 0.52; cue-poor: 

5.17 ± 0.61, t(26) = 0.82, p = 0.42, unpaired t-test), we performed acute recordings using silicon probes (4/8 shanks; A-32/A-64 

Buzsaki Probe, Neuronexus). The day before the first recording session, animals were anesthetized (with isoflurane supplemented 

with buprenorphine 0.1 mg/kg) and a craniotomy was made over one hippocampus (centered at a point AP: - 2 mm ML: ± 2 mm). 

The craniotomy was covered with agarose (2% in physiological Ringer solution) then sealed with silicon elastomer (Kwik-Cast, 

World Precision Instruments). This craniotomy was used for acute recording for 2-3 consecutive days (with the probe lowered 

to a new location each time). A second craniotomy was then made over the other hippocampus using the same procedure, 

and recordings were made for 2-3 additional days. The silicon probe was lowered into the brain while the animal was allowed 

to walk freely on the wheel with the screens displaying a black background. The good positioning of the probe with recording sites 

in the CA1 pyramidal cell layer was verified by the presence of multiple units showing complex spike bursts at several recording 

sites and the recording of sharp wave ripples during quiet behavior. After positioning the silicon probe, the virtual reality environ

ment was displayed on the screen. On the day of the last recording in each hippocampus, the back of the probe shaft was coated 

with a thin layer of a cell-labeling red fluorescent dye (DiI, Thermo Fisher Scientific), so that its location (shaft tips) could be as

sessed histologically post hoc. All mice (n = 16) were recorded in a familiar environment (either cue-poor or cue-rich track) for 

approximately 20 trials. For mice trained in the cue-poor track (n = 10), these trials were followed by an intracranial infusion of 

muscimol (n = 5) or aCSF (n = 6) in the MS (see ’Intracranial infusions’ section), during which the mouse was free to run with 

the screens turned off (black). Approximately 15 min after the infusion, mice were again exposed to the familiar track for at least 

20 trials. Some mice (n = 4 for muscimol, n = 4 for aCSF) were then exposed, 3 min after the end of the second session, to a new 

environment (cue-rich track), identical to the previous one except for the presence of two 3D objects (an origami and a cube). 

Again, animals had to complete at least 20 trials in this last condition. Note that animals stayed head-fixed on the wheel sur

rounded by screens during the entire recording session.
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Intracranial infusions

Intracranial infusions were performed as follows. First, a custom-made infusion cannula (33 Ga, Dominique Dutscher) was connected 

by polyethylene tubing to a 2 μl Hamilton syringe mounted in a microinjection pump (Fusion 100 Infusion pump, Chemyx). The syringe, 

tubing, and cannula were filled with pure water. Dissolved muscimol or aCSF was then added to the infusion cannula (separated from 

the water by an air bubble). Muscimol powder (Sigma-Aldrich) was dissolved in sterile aCSF (Harvard Bioscience, Inc.) at a concen

tration of 1 μg/μl. At the beginning of the microinjection procedure, the infusion cannula was inserted into the implanted guide cannula 

and the infusion was made 1 mm deeper than the tip of the guide cannula. 0.1 μl of muscimol or aCSF was slowly injected into the MS 

(0.08 μl/min), and the infusion cannula was left in place for another 2 min after microinjection was completed. During infusion, the 

animals were allowed to run freely and were given food. Animals showed no signs of stress or discomfort during the procedure. 

10-15 min after microinjection, animals were returned to the virtual familiar environment.

Data acquisition and pre-processing

The animal’s position in the virtual maze was digitized by the virtual reality control computer (Phenosys) and then sent to a digital-to- 

analog card (0-4.5V, National Instrument Board NI USB-6008) connected to the external board (I/O Board, Open Ephys) of a 256 

channels acquisition board (Open Ephys). Neurophysiological signals were acquired continuously at 25 000 Hz on a 256-channel 

recording system (Open Ephys, Intan Technologies, RHD2132 amplifier board with RHD2000 USB interface board). Spike sorting 

was performed semi-automatically using KlustaKwik56 (https://github.com/klusta-team/klustakwik). Clusters were then manually 

refined using cluster quality assessment, auto- and cross-correlograms, cluster waveforms, and similarity matrix (Klustaviewa).

Histology

The location of the infusion site in the medial septum was verified by looking at the gliosis induced by the injection on coronal slices of 

the mouse’s brain stained with DAPI. A slight gliosis within the medial septum indicates the infusion site. For this, animals were 

perfused transcardially with antigenfix (Diapath) solution. The brains were post-fixed for 12h, transferred in 0.1 M PBS and cut in 

70-μm thick slices (Leica Vibratome) through the medial septum and the hippocampus. Brain slides were mounted on glass slides 

with DAPI (Thermo Fisher Scientific) and images were acquired under a confocal microscope (SP5X, Leica).

Data analysis

Data analysis was performed using custom written programs in using MATLAB or python softwares.

Reward zones definition

The reward zones, located between the maze extremities and 10% of the track length (0–20 cm and 180–200 cm), were not consid

ered in the analysis.

LFP Theta attenuation analysis

The original broadband signals were low-pass filtered (0-500 Hz) and down sampled to 250 Hz for local field potentials. The time- 

frequency spectrogram (0-20 Hz) of the LFP was computed using a window size of 5 s and a time step of 1 s, and was 1/f corrected. 

The LFP was band-pass filtered in the delta (0.5 - 4 Hz) and theta (6 - 9 Hz) bands using zero-phase IIR Butterworth filters. Theta 

power was computed when the animal was performing the task in each track condition before and after the infusion. We first deter

mined the theta power by Hilbert transform and calculated the theta power on the channel with the best ratio of theta to delta power 

when the animal speed exceeded 2 cm/s. Theta power was taken from the maximum power in the 6-9 Hz band. To examine changes 

in theta power after infusion of aCSF or muscimol in different recording sessions, the absolute theta power was normalized by 

dividing by the total power of the band (1-30 Hz). This normalization allowed comparison of pre- and postinfusion theta power levels 

across recording sessions. A second method was used to calculate the theta power in each movement period. Movement periods 

were detected using criteria for running speed and duration. Specifically, a locomotor period was defined as a period of at least 2 

seconds with a velocity greater than 2 cm/s. Two movement periods were merged if less than 0.5 sec separated them. The theta 

power in the movement period was averaged. For both theta power methods, the percentage of theta attenuation was computed 

from the ratio of theta power after the infusion to the theta power before the infusion.

Speed and stop analysis

The maze was divided into 100 spatial bins of 2 cm, and the mean speed was calculated for each bin. The mean speed before or after 

muscimol infusion was the average of all bin speeds in each condition. We considered that the animal was making a stop if its speed 

was less than 1 cm/sec in a spatial bin (at least 2 seconds stop).

Firing rate map

The maze was divided into 100 spatial bins of 2 cm. For each trial, the number of spikes and the occupancy time of the animal in each 

spatial bin were calculated to obtain the number of spikes vector and the occupancy time vector, respectively. These vectors were 

smoothed using a Gaussian filter with a half-width set to 10 spatial bins. Spikes occurring during epochs when the velocity was less 

than 2 cm/s were removed from all analyses. The smoothed spike count vector was divided by the smoothed occupancy time vector 

to obtain the firing rate vector for each trial. Firing rate vectors were pooled for a given condition (track condition, pre- or post-infusion) 
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and animal direction (e.g., back) to create a firing rate map. These pooled vectors were also averaged to produce the mean firing rate 

vector, which corresponds to the mean firing rate for each spatial bin.

Pyramidal cell classification

Cells with a mean firing rate lower than 20 Hz and either a burst index greater than 0 or the spike duration greater than 0.4 ms were 

classified as putative pyramidal neurons.57 They were classified as interneurons otherwise. To distinguish deep pyramidal cells from 

superficial pyramidal cells, we defined the middle of the CA1 pyramidal layer as the recording site where ripples had the largest po

wer.30 To detect ripple events, a spectrogram (using a short-time Fourier transform) of the LFPs in CA1 pyramidal layer was 

computed (time windows of 20 ms) for one channel (the one with the strongest ripple power between 120 and 230 Hz) of each shank. 

Ripple epochs were defined as periods during which ripple power (120 to 230Hz) was continuously greater than the mean of 120 to 

230Hz power + 3 standard deviation (sd) and lower than the mean of 250-300Hz + 3 sd. Then, during ripples times, the power in the 

ripple band was calculated for each channel and the channel with the largest mean power was selected as the middle of the pyra

midal layer.58 To locate the approximate location of the cell body, we used a previously established method.33

Active cells classification

A cell was considered active if the mean firing rate was greater than 0.3 Hz, the peak firing rate was greater than 1 Hz, and the cell fired 

at least one spike in 50% of the trials. These three criteria had to be verified in either the forth or back direction. The percentage of 

active cells in each recording session was calculated from the total number of pyramidal cells. All recording sessions had at least 15 

recorded neurons.

Place cells classification

A place cell was defined as a pyramidal cell that showed a mean place field in at least one direction. A bootstrap procedure was used 

to detect a mean place field. For each trial, a new spike train was generated by randomly shuffling spike times. A "randomized" firing 

rate map was then generated and the mean firing rate vector was determined and compared to the mean firing rate vector from the 

initial rate map. This process was repeated 1000 times to generate a p-value vector (p-value for each 2 cm spatial bin). Candidate 

place fields were defined as a set of more than three contiguous spatial bins associated with p-values less than 0.01. Two place fields 

were merged if the distance between their closest edges was at most equal to five spatial bins (10 cm). The edges of place fields were 

extended by a maximum of five spatial bins (for each edge) if the p-value for these bins was less than 0.30. A field with a size greater 

than 45 spatial bins (90 cm) was not considered as a place field. To validate a mean place field, the cell had to verify a stability cri

terion. Spatial correlations were calculated between the firing rate vector of each trial and the mean firing rate vector. The spatial bins 

corresponding to other detected place fields were not included in the spatial correlations. The place field was validated if the spatial 

correlations were greater than 0.60 in at least 40% of the trials. If multiple mean place fields were detected, only the place field with 

the highest peak was retained, unless otherwise specified. An active cell with at least one place field in one direction was considered 

a unidirectional place cell. Bidirectional cells were place cells with at least one place field in both directions. The proportion of place 

cells was calculated from the total number of active cells while the proportion of bidirectional and unidirectional place cells was calcu

lated from the total number of place cells. All recording sessions had at least 13 active cells. To calculate the proportion of bidirec

tional and unidirectional cells, only sessions with at least 4 active cells were included. The same procedure was used to calculate 

place fields per lap without the stability criterion, which cannot be calculated on single trials. A place field per lap was conserved 

if it overlapped at least one spatial bin with the closest mean place field.

% of bidirectional cells and relative change

To quantify the effect of muscimol infusion on the number of bidirectional place cells, we calculated the percentage of bidirectional 

place cells over all place cells before and after muscimol infusion. Only sessions with at least 4 place cells were kept for this analysis. 

To quantify the effect of MS inactivation on each cell category (unidirectional, bidirectional, or non-place cells), the relative change 

was calculated by dividing the difference in the number of cells (after-before) by the number of cells before the MS infusion.

Distance and cue indices

For each bidirectional cell, a distance index reflecting the tendency of cells to fire in back-and-forth trials at the same distance from 

the start of each journey was calculated using the mean firing rate maps. The distance from the starting point to the peak rate of the 

place field was calculated for each direction. This formula was then used to calculate the distance index (DI):

DI =

[

1 −
abs(D2 − D1)

80
− 0:5

]

× 2 

where abs(D2-D1) is the absolute value of the distance in bins between the peak rate positions in both directions. 80 is the number of 

bins (excluding reward zones). If there was complete overlap between the place fields, the distance index would be one. If there was a 

difference of 40 bins between them, the index would be equal to 0. A cue index reflecting the tendency of cells to fire similarly in back- 

and-forth trials in reference to local visual cues was computed using the same formula, except that the firing rate maps were aligned 

to the local visual cues. Place cells with a cue index close to -1 corresponded to distance coding cells with place fields at the ends of 

the track. Bidirectional place cells with both a distance index and cue index greater than 0.5 corresponded to place cells with place 
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fields in the middle of the track in both back-and-forth trials were excluded from analysis (3 out of 90 in the cue-poor track and 6 out of 

99 in the cue-rich track).

Distance and cue-dependent coding cells

Cells with a distance index greater than 0.5 and a cue-dependent index less than 0.5 were classified as distance-coding cells. 

Conversely place cells with a cue-dependent index higher than 0.5 and a distance index lower than 0.5 were classified as cue-depen

dent coding cells because they tended to code similarly in reference to local visual cues in back-and-forth trials. For these two cat

egories of cells, the distribution of place fields between the cue-rich and cue-poor parts was examined by comparing the proportion 

of place fields located in a 40 cm zone enriched with local visual objects with the proportion of place fields located in a 40 cm zone 

deprived of cues.

Randomization of place fields for cue-dependent coding cells

For the cue-dependent coding cells, we randomly shifted, 1000 times, the cue-dependent fields in the backward direction while 

respecting the distribution of fields along the track. The percentage of cue-dependent coding cells and their cue index was calculated 

for 1000 randomization in order to obtain a distribution of predicted values. The observed values were then compared to these pre

dicted values and were considered significant if they were located above the 99 percentile of the distribution. Because this analysis 

was designed to assess the significance of cue-dependent coding, only the fields of cue-dependent place cells were randomized but 

not the one of distance-coding place cells. Therefore, if the number of cue-dependent coding cells goes down following randomi

zation, the percentage of cue-dependent coding place cells also goes down by design.

Population vector analysis

To assess the quality of distance coding at each position in the track, a population vector analysis was performed using the place field 

maps of both directions. The place field maps indicate the presence (1) or absence (0) of a place field for all bidirectional cells. 

Accordingly, each bin of the place field map contained a vector indicating the presence or absence of a place field for each bidirec

tional cell. We then correlated (Pearson’s correlations) the vectors from the place field map of the forward trials with all the vectors 

from the place field map of the backward trials to obtain an 80*80 correlation matrix. For statistical comparison, we first generated 

500 randomized firing rate maps for each cell (using the same method as for place field detection) and computed the population vec

tor analysis for each randomized firing rate map. We then looked for correlations in the real data correlation matrix that were above the 

99% percentile calculated from the randomized correlation matrices. These correlations were considered significant.

Distance overlap

Another method used to assess the quality of distance coding at each location in the track was distance overlap. First, place field 

maps of both directions were aligned to the starting point, and for each bin we computed the ratio of the number of cells coding 

for distance (showing place field overlap) to the total number of bidirectional cells coding for distance in at least one direction for 

that position. This value measures the probability, at each position bin, that bidirectional place cells are coding for the distance. 

For better comparison between conditions (pre- vs. post-infusion), we averaged the distance overlap values in bins of 20 cm.

Spatial correlation

To assess distance coding in unidirectional cells (cells that have a place field in only one direction) and non-place cells (cells that have 

no place field) we performed, for each cell, spatial correlation between the mean firing rate vector in one direction and the mean firing 

rate vector in the other direction, with both firing rate vectors aligned to the starting point. These values were compared with shuffling 

values corresponding to spatial correlation between random pairs of cells in the back-and-forth trials.

Stability index

The stability index of a cell was computed as the mean of the spatial correlations between all pairs of firing rate vectors. This way, the 

cell stability index takes into account the activity patterns of all trials and provides a reliable quantification of the inter-trial reproduc

ibility of the cell’s activity. Note that this stability index differs from common stability indices based on correlations of mean firing rates 

between even and odd trials or between two halves of the same recording session, so the values obtained are not directly 

comparable.

Spatial Information

The spatial information (SI) was calculated according to the following formula (Skaggs et al., 1996):

SI =
∑N

i = 1

[
FRi

FR
×

OTi

OTT

× log2

(
FRi

FR

)]

where N is the number of spatial bins (N = 100), FRi is the mean firing rate determined in the i-th spatial bin, FR is the mean firing rate, 

OTi is the mean occupancy time determined in the i-th spatial bin, OTT is the total occupancy time based on the mean occupancy time 

vector.
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Out/in-field firing ratio

The out/in-field firing ratio was computed as the ratio of the mean firing rate outside the mean place field (excluding secondary place 

fields) to the mean firing rate inside the mean place field.

Place field dispersion

A place field dispersion measure has been computed to quantify how much each place field per lap was dispersed around the mean 

place field. The place field dispersion (PFD) was calculated using the following formula:

PFD =
L

N

[
1

M

∑M

i = 1
(C − Ci)

2

]1
2 

where C is the center of the mean place field, Ci is the center of the field in the i-th lap and M is the number of laps with a single-trial 

detected field, L is the total length of the maze and N is the number of spatial bins. The center of a place field was defined as the spatial 

bin with the highest firing rate.

Place field width

Place field width was computed as the distance between the place field edges and only determined for entire place fields. A place 

field was considered as complete when its firing rate increased above 30% of the difference between highest and lowest place field 

activity and then dropped below this threshold.

Spatial cross correlation analysis

For the cross-correlation analysis, the time-course of activity for each cell was split into laps within the same condition. The 200 cm 

track was divided into n = 100 bins of equal size. Firing rates were calculated as the number of spikes fired in a spatial bin divided by 

the time spent by the animal in it. Only the data points in which the rodent had a velocity higher than 2cm/s were included in the 

binning procedure. Firing rates were smoothed with a sliding Gaussian window and with a half width of 10 bins.

To extract the spatial shift between pairs of cells we first calculated, with a custom MATLAB function, the two-point correlation 

Cl
ij(δ)between the firing rates ωl

i and ωl
j for the cell pair (i, j) in lap l and at a spatial lag δ, namely:

Cl
ij(δ) =

1

n − δ − 1

∑n − δ

m = 1

[
ωl

i(m) − μl
i(δ)

σl
i(δ)

×
ωl

j(m+δ) − μl
j(− δ)

σl
j(− δ)

]

; (Equation 1) 

where n is the number of spatial bins, δ is the lag defined as a discrete number of spatial bins, μ and σ are, respectively, the mean and 

the standard deviation of the firing rate ωl
i defined as follows:

μl
i(δ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

n − δ

∑n

m = 1+δ

ωl
i(m); δ < 0

1

n − δ

∑n − δ

m = 1

ωl
i(m); δ ≥ 0

(Equation 2) 

σl
i(δ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − δ − 1

∑n

m = 1+δ

[
ωl

i(m) − μl
i(δ)

]2

√

; δ < 0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

n − δ − 1

∑n − δ

m = 1

[
ωl

i(m) − μl
i

]2

√
√
√
√ ; δ ≥ 0

(Equation 3) 

For each pair of cells, we considered both positive and negative lags by means of the following equivalence:

Cl
ij(δ) = Cl

ji(− δ) (Equation 4) 

The maximum lag considered was δmax = 70, corresponding to a physical distance of 140cm. The order of spatial bins in back

ward laps was reversed to measure the distance from the start of the lap rather than the absolute position on the track.

Finally, the cross-correlation function for the (i, j) cell pair was obtained by averaging out the lap dependence:

Cij(δ) =
1

Lij

∑Lij

l = 1

Cl
ij(δ) (Equation 5) 

where Lij is the number of laps in which both cells of the pair were active. To avoid small sample errors, we included only the cell pairs 

for which Lij was higher than 80% of the total number of laps in the condition considered. We call N80% the number of such pairs.
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To assess the significance of each cross-correlation value Cij(δ) we compared it with a distribution Γij(δ) obtained from a set of 

1000 randomizations of the dataset. Each randomization was performed on the spike counts arrays for the (i, j) cells by reshuffling 

the order of the spatial bins for each cell and lap. The cross-correlation procedure was then performed on the randomized dataset, 

after smoothing, to obtain a correlation value for each cell pair and lag δ: A p-value pij(δ)was assigned to each cross-correlation value 

Cij(δ) through the z-score derived from the comparison with the Γij(δ) distribution. Among all possible pairs (i, j), we selected as signif

icantly correlated only those with a cluster S of at least Scluster = 10 adjacent lags δ for which pij(δ)< 0:001. The fraction of such pairs 

was then calculated by dividing the number of selected pairs by N80%.

The spatial shift Dij in the activations of the cell pair (i, j) was then chosen to be the distance value belonging to a significant cluster 

and corresponding to the peak of cross-correlation, namely Dij = 2cm× argmax
δ∈S

Cij(δ). For each mouse and condition, a distance 

matrix was created by the collecting the values 
⃒
⃒Dij

⃒
⃒ from all selected pairs. The multidimensional scaling on such matrices was 

then performed with the MATLAB mdscale function using the metricstress criterion and a number of replicates equal to 50.

UMAP Analysis

Population Activity Analysis

Preprocessing.

• Spike Train Convolution: The spike trains were convolved with a 200ms Gaussian kernel to smooth the binary spike trains into a 

continuous representation of the neural firing rate over time.

• Subsampling: The convolved signal was subsampled down to 5Hz to reduce the dimensionality of the data while preserving the 

low-frequency components relevant for population activity analysis.

• Velocity Thresholding: Time points where the animal’s velocity fell below 2cm/s were excluded from the analysis to remove 

periods of inactivity where neural activity might not lie on the 1D manifold.

• High Firing Rate Neuron Exclusion: Neuronal clusters with a basal firing rate exceeding 8Hz, determined by a threshold based 

on the population firing rate histogram, were excluded to minimize the influence of potential interneurons on the UMAP dimen

sionality reduction.

• Time window selection: session time limits where sometimes adjusted to account for probe movements hightlighted by raster 

plot analysis.

Dimensionality Reduction with UMAP. UMAP59 (Uniform Manifold Approximation and Projection) was used to reduce the dimen

sionality of the preprocessed population activity data. UMAP preserves the underlying distance relationships between data points in 

a lower-dimensional space, making it ideal for exploring the structure of neural activity patterns.

UMAP was configured with the following parameters:

• Target Dimensionality: 2 (embedding the data into a two-dimensional space)

• Number of Neighbors: 30 (specifying the number of neighboring data points used in the local neighborhood structure)

The resulting two-dimensional embedding allows for visualization and further analysis of the population activity patterns across the 

recorded neural clusters.

Analysis of Tuning Curves.

• Identifying 1D Manifold Modulated Neurons: To identify neurons whose activity is modulated by the 1D manifold state, tuning 

curves were extracted from the UMAP-embedded data.

• Curvilinear Abscissa: A spline function was fit to the two-dimensional embedding to obtain a coordinate along the 1D manifold. 

This curvilinear abscissa reflects the continuous nature of the coding manifold and the animal’s exploration path. The proced

ure consists first in an automatic fit, and second by a human-controlled verification and correction. The steps for the automatic 

procedure are the following: i. K-means clustering wih 4 clusters was performed on the UMAP positions of all data points. ii. 

Hierarchical clustering was used to order correctly the k-means centroids along the presumed trajectory. iii. A B-spline curve 

was interpolated through these centroids to define the curvilinear abscissa.

• Human-controlled verification and correction. The automatically generated curvilinear abscissa was then manually refined if 

necessary to better capture the overall structure of the UMAP data by refining the position of the centroids.

• Tuning curve Construction: Tuning curves were built similarly to place cell tuning curve but using the curvilinear abscissa as 

parameter instead of the raw spatial coordinate of the animal. Each tuning curve consisted in 50 bins spanning the entire extent 

of the curvilinear abscissa.

• Statistical significance: a standard statistical test for place field significance7,60–62 was employed to assess the statistical sig

nificance of theses tuning curves. A circular shift validation method was used. For each lap independently, the spike trains were 

shifted in time circularly after removing immobility periods. Tuning curves were then generated for the shifted spike trains. The 

original tuning curve was considered significant if its maximum value exceeded the 5th percentile of the maximum values ob

tained from the shifted controls. Only tuning curves surpassing this significance threshold were retained for further analysis.
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Analysis of the correlation between the UMAP projection and spatial coordinates. To assess whether the population of neurons 

encodes for absolute distance, a correlation coefficient between the UMAP projection and the corresponding spatial coordinates 

for each dataset was computed.

To achieve this, we denote the coordinates of the i-th projected population activity vector as (xi, yi) and the corresponding spatial 

coordinate si. We then center the data ~xi = xi − 〈x〉 and ~si = si − 〈s〉, where 〈.〉 denote the mean value over the whole set of points. We 

then define the correlation coefficient as:

r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈~x~s〉2
+〈~y~s〉2

√

〈~x
2〉〈~s

2〉+〈~y
2〉〈~s

2〉
(Equation 6) 

This coefficient ranges from 0 to 1. It essentially represents the normalized norm of the electric dipole moment for the distribution of 

charges si at position (xi, yi). A value of r = 1 indicates a perfect linear relationship between the UMAP projection and the spatial var

iable s. Conversely, a value close to 0 suggests a symmetry s ↔ − s in the UMAP projection, or a global mixing. Moderate value can be 

achieved in the case of a cloud such that one of its axis correlates with s. The larger the extension along the orthogonal axis, the 

smaller the value of r will be.

Global statistics. To assess the dominant coding scheme, we calculate the set of correlation coefficients r between the UMAP pro

jection and the distance with respect to the start of the lap, or between the UMAP projection and the absolute position. To assess the 

significance of our values, we compare it with those obtained after temporal circular shift of the spike trains (see above). The com

parison between both set of r-coefficients highlights the distance coding scheme, the correlation with the position being comparable 

with the value after circular shift.

To examine the impact of muscimol infusion, we calculate the set of r correlation coefficients between the UMAP projection and the 

distance with respect to the start of the lap (i) before the injection and, (ii) after injection (of muscimol or aCSF).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using MATLAB codes (MathWorks) or Python for the UMAP analysis. For each distribution, a 

Lilliefors goodness-of-fit test was used to test whether the data were normally distributed, and a Levene test was used to test for 

equal variance. To compare two independent distributions, the unpaired Student t-test was used if normality or equal variance 

was verified, otherwise the Wilcoxon rank-sum test was used. Wilcoxon signed-rank or paired t-test was used to compare paired 

samples. For multiple comparisons, 2 independent factors ANOVA was used to test for normality and equal variance between sam

ples, otherwise Kruskal-Wallis test with Bonferroni post hoc test was used. The chi-squared test was used to compare the percent

ages of cell category (unidirectional vs bidirectional or for bidirectional cells only: distance coding vs cue-dependent coding vs un

classified) between track condition (cue-rich and cue-poor) or between infusion condition (before vs after or muscimol vs aCSF). All 

tests were two-sided unless otherwise stated.
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