Rev: 11/28/2014

Fluorescent microscopy

Microscopie for dummies (or not) Part 2

François MICHEL PhD

Institut national de la santé et de la recherche médicale

Some fluorescent images

What's going on

Fluorescence ??

- Epi-fluorescent microscopy
- Welcome in the third dimension
- Two-photons and others...

Fluorescence principles

F. Michel 28.11.14

Excitation and emission are quantum phenomenon: the molecule accept a certain energy amount, neither too much nor too little, to be excited and reemit this energy around a privileged value (emission peak).

Fluorescence principles

Each fluorescent molecule is characterized by an excitation and an emission spectra (influenced by its own chemical structure and physical environment (pH, T...)).

> Energy loss between excitation and emission Red shift: (Stokes shift)

Fluorescence principles

The main interest of fluorescence is the high level of signal/noise ratio. We can also add other advantages such as:

- Label specificity
- In vivo compatibility and non-toxicity
- Easy to use
- Cheap
- Versatility...

GFP

YFP

Ds Red

Fluorescent proteins

489

514

558

508

527

583

They come from jellyfish or from corral genes. Fluorescent proteins combine the advantages of fluorescence and genetic engineering to help us in biological processes analysis. They were optimized for different characteristics: spectral, quantum yield, stability, expression speed, sensitivity to pH, Ca²⁺, Cl⁻ ...

« Brainbow mouse » Livet et al. Nature 2007

What's going on (again)

✓ Fluorescence ??

- Epi-fluorescent microscopy
- Welcome in the third dimension
- Two-photons and others...

F. Michel 28.11.14

Epi-fluorescence microscopy

Epi-fluorescence mean that the objective is used both for illumination (like a condenser) and detection. All the other part of the microscope are the same as transmitted light seen in the first part of the course. Once take advantage of the fluorescence red-shift to discriminate between excitation and emission light

Filters typology

Filter typology

Multi-labeling need smart choice in the filters and fluorophores. Indeed, excitation and emission spectra could overlap and induce artifacts. For example, excitation spectrum of A555 have a shoulder in excitation spectrum of A488 : We have to discriminate both signal with emission even if we lose part of the signal and if we need to make sequentially one color after the other.

Filter choice

Fluorescence microscopy

What's going on (again)

✓ Fluorescence ??

- ✓ Epi-fluorescent microscopy
- Welcome in the third dimension
- Two-photons and others...

Welcome in the third dimension

There are several techniques that increase the quality of images, the most famous is confocal microscopy. Out of focus fluorescence induce blurring that altered images. We can detect all photons that come from the totality of the illumination column (as a diabolo).

F. Michel 28.11.14

Structured Illumination microscopy

A dark line network (grid) is placed in a conjugated focal plan with the objective one. The lines occult 1/3 of the field. We then obtain a sharp image of the grid in the object focal plan and 1/3 of the field is hidden by black lines and not excited. Diffused/out-of-focus photons that arrived to the camera are removed thanks to software. Indeed, the the computer " know " where are the black lines and non pertinent photons are subtracted. The grid is 1/3 of field translated and a new image is generated. The merge of 3 successive shifted striped images allow the reconstruction of a cleaned of out-of-focus photons image (optical slice).

Structured Illumination microscopy

F. Michel 28.11.14

Structured Illumination microscopy

40 X (NA = 1.3) expo time: 15 ms (87 frames Δ Z=0.5 µm)

Confocal microscopy

In a confocal microscope, illumination is based on lasers scanning. A laser is a mono-spectral photon source (no more excitation filter). The beam pathway goes in a couple of motorized mirror (XY scanner) and excite the sample by line scanning. The fluorescence goes through the objective and is filtered (dichroic mirror and emission filter) and finally impact a detector. This device give different control level (scan speed, fine tuning of the illumination energy, more power locally available...). All these parameters increase the image quality and the XY resolution thank to the beam sharp shape.

Confocal microscopy

Detection

Z resolution improvement is obtain with the creation of a focal point behind the detector, conjugated with the objective focal point. All photons that do not come from objective focal point will be stopped by the diaphragm placed in the conjugated plan: pinhole (spatial filter). It removes outof-focus photons and generates an optical slice of the sample.

Confocal microscopy

The detection is operate by a photo-multiplier tube (PMT). It measure the photon quantity (whatever the λ) as a function of time (time sampling) and the pixel size is proportional to the integration time.

In t1 in the coordinate of the scanning point X1Y1 the fluorescence intensity is F1, in time t2 (X2Y2) the fluorescence intensity is F2... The image is reconstructed pixel by pixel with Fn (XnYn) values.

A PMT is a detector that transforms photons in electrons with a photocathode. It generate a current that will be amplified thanks to a large potential difference between the input photocathode and the output anode (more than 1000 V). The amplification is supported by intermediate electrodes (dynodes) with increasing positive potentials that liberate large amount of electrons for each photoelectron impact.

F. Michel 28.11.14

Confocal microscopy (resolution)

Max xy resolution \approx 250 nm Max z resolution \approx 600 nm Max xy resolution \approx 150 nm Max z resolution \approx 300 nm

The bigger is NA, the better is the resolution

Confocal microscopy (axial sampling)

Do not make confusion between resolution and optical slice thickness: $\delta Z=f(NA, n, \lambda, pinehole...)$

The optimal step size in Z (Δ Z) depend of the resolution (Res_z=1.4 λ /ON²) and of sampling laws (Nyquist-shanon): 1/2 Res_z< Δ Z <1/3 Res_z

Pixels and Voxels ...

"Picture element" and "volumetric elements"; scaling

Multi-dimensional confocal microscopy

Dimensions may be: the depth Z, Time T, color λ ... We so can make 3, 4 or 5D images.

Spinning disk (nipkow) confocal microscopy

- Low penetration in thick samples (<40 100 µm depending of the tissue and the fluorophore)</p>
- Lower photo-bleaching in and out focal plan Vs regular one beam scaning
- Temporal resolution adapted to in vivo studies (>50 Hz EMCCD camera)

InMAGIC

Unsynchronized Image Capture in Spinning Disk Microscopy

Leica SP5-X confocal microscope

- White Laser
- Argon Lasers and UV-blue diode
- AOBS
- Spectral detector
- 1 PMT + 2 Hybrides
- Motorised stage

Leica SP5-X : Lasers

- Argon Lasers (458, 476, 488, 497, 514 nm)
- UV-blue diode (405 nm)
- White Laser (470-670 nm) : 8 possible λ with a minimal gap of
- 8 nm, 1.5 to 6 mW per beam (@500nm and <600 nm respectively)

AOTF (Acousto-Optic Tunable Filter)

Leica SP5-X : AOTF

The amplitude of the perpendicular radio wave affects the transmission of the light beam and its frequency on the wavelength

Leica SP5-X : AOBS

Acousto-Optic Beam Splitter

Leica SP5-X: spectral detector

Leica SP5-X: Hybrides detector

PMT GaAsP (Gallium-Arsenide-Phosphide)

HyD's quantum efficiency is superior to standard PMTs ...

Hybrides detector: HyD

GaAsP photocathode

Vacuum acceleration over 8.5 kV

Electron bombardment gain

Avalanche gain ~ 0.5 kV

... and even to GaAsP PMTs

Leica SP5-X: Spectral excitation/detection

Excitation Optimization

λ^2 map

Emission wavelength / nm

Multi - labeling

- Deep penetration in thick tissue is limited (<60 150 µm depending of the tissue and/or the fluorophore)</p>
- Photo-bleaching in and out the focal plan : limitation of the experiment duration and of the image number per field.
- Photo-toxicity: affect living tissues, due to UV light energy and chemical reactions secondary to bleaching process.
- Temporal resolution do not fit with in vivo protocols in a large set of neurobiological studies (action potential 1-5 ms)

What's going on (again)

✓ Fluorescence ??

✓ Epi-fluorescent microscopy

- ✓ Welcome in the third dimension
- Two-photons and others...

MAGIC

F. Michel 28.11.14

Two infrared photons (IR) combine their energy to excite the fluorophore. On the other hand , excited state, relaxation and fluorescence emission are identical as a regular mono-photon excitation

Photons have to arrive in a time window of about 10⁻¹⁸ seconds (**atto**-second). This time scale is compatible with the time duration of the lifetime of this virtual state (10⁻¹⁷ seconds or 0.01 **femto**-second). They have to interact equally with the electronic cloud in a space of about 10⁻¹² cm³. The two-photon excitation probability is **10⁻³⁰** time lower than one-photon !! (theorized by Maria Goppert-Mayer 1931 (Physics Nobel prize 1963))

Physical principle of multi-photon microscopy

The photon density that allow us to go beyond this quasi-null probability could only be reach with pulsed lasers (1980) and only in the focal point (convergent point).
Each pulse is extremely short (femto-second) and comport an enormous number of photons (pulse power : more than 100 kW) but in a temporal scale are infrequent: 5 orders of magnitude between the duration and the occurrence of pulses.

One femtosecond (fs) is a millionth of a billionth second (1 fs = 10^{-15} s). In one second the light reach the moon from earth while in 10 fs it run through one cell thickness ($30 \mu m$).

F. Michel 28.11.14

Light/mater interactions

Two-photon absorption

 $\mathsf{E}_{2\gamma}=\mathsf{P}^{2}/\left(\tau.\mathsf{F}\right)$

Necessary conditions for two-photon excitation implicate a very high photon density:

> In a spatial dimension (concentration due to focalization, NA)

And in temporal dimension (pulsed laser femtoseconde)

Two-photon excitation occur only in the focal point

1 photon 2 photons 00/. 07A

Focal point

The scanning induce an optical slice intrinsically confocal, we do not need to remove out-of-focus photons (not generated).

Optimal absorption wavelength

	λ _{abs1} (nm)	$\lambda_{abs2} (nm)$
Bodipy	503	920
Cascade Blue	400	750
DAPI	350	700
Fluorescéine	492	780
Indo-1	350	700
Lucifer Yellow	430	860
Rhodamine B	545	840
Rhodamine 6G	526	795

Two-photon excitation spectra is not directly the double, point to point of mono-photon excitation spectra (nonlinear optic).

3- photons excitation Example : DAPI

T-pulse Laser (Amplitude Systemes): fixed wavelength: 1030 nm

Two-photon vs confocal images

Two laser lines (488 nm and 920 nm) in the same microscope in a GFP expressing brain slice

Low depth: objective 63X oil

Confocal

- Better resolution
- Better signal to noise ratio

20 µm

40 µm

60 µm

80 µm

Two-photon
- More noise

- Thicker optical slice

Two-photon vs confocal images

Deeper acquisition depth: objective 63X Water

100 µm

120 µm

Confocal

- Maximal laser power

- Increasing noise

- Limit of detection (low signal)

Two-photon

- Increasing laser power
- Easier acquisition than confocal

100 µm

140 µm

170 μm 200 μm End of the slice...

Multiphoton: The pros and the cons

ADVANTAGES

- Intrinsically confocal, small excitation volume
- No out-of-focus fluorescence
- less photo-bleaching and photo-toxicity
- Deeper penetration of IR light in tissues (up to 1 mm)
- UV fluorophores excitation without UV light
- Large gap between excitation and emission light.

LIMITATIONS

- Photo-bleaching at focal point
- Need powerful pulsed laser
- Power balance between damages and detection could be difficult to evaluate
- Expensive to buy and to keep it working

Sources and Ressources

WEB divers

Molecular expressions <u>http://micro.magnet.fsu.edu/index.html</u>
 Microscopy U (Nikon) : <u>http://www.microscopyu.com</u>
 Microscopy resource system (Olympus): <u>http://www.olympusmicro.com/index.html</u>
 A whole world of microscopy knowledge (Zeiss): <u>http://zeiss-campus.magnet.fsu.edu/index.html</u>
 Wikipédia

Plate-formes d'imagerie

 PICSL <u>http://www.picsl.univ-mrs.fr/</u>: MICROSCOPIE OPTIQUE (PDF indisponible)
 BIC <u>http://www.bic.u-bordeaux2.fr/</u>: Microscopie à épi-fluorescence et microscopie confocale (PDF)
 Membres du <u>GDR2588</u> CNRS (microscopie fonctionnelle des systèmes vivants) et du <u>RTmfm</u> (Réseau technique de microscopie de fluorescence multidimensionnelle).

<u>Cours</u>

Arnaud Sergé (université de la Méditerranée – Marseille II)
 Yves Husson (Université Joseph Fourrier – Grenoble)
 Serge Monneret (Institut Fresnel, Marseille)
 Maxime Dahan (Laboratoire Kastler Brossel, ENS)
 François Waharte (institut Curie, UMR144)

Handbooks

Fondamentaux d'optique et d'imagerie numérique à l'usage des microscopistes (C Cibert, ed. Cépaduès)
 Handbook of biological confocal microscopy, third edition (JB. Pawley ed. Springer)
 Fundamentals of light microscopy and electronic imaging (DB. Murphy, ed Wiley-liss)

Comments, remarks and improvement (and English corrections ③) francois.michel@inserm.fr

