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Williams, John T., MacDonald J. Christie, and Olivier Manzoni. Cellular and Synaptic Adaptations Mediating
Opioid Dependence. Physiol Rev 81: 299–343, 2001. —Although opioids are highly effective for the treatment of pain,
they are also known to be intensely addictive. There has been a massive research investment in the development of
opioid analgesics, resulting in a plethora of compounds with varying affinity and efficacy at all the known opioid
receptor subtypes. Although compounds of extremely high potency have been produced, the problem of tolerance
to and dependence on these agonists persists. This review centers on the adaptive changes in cellular and synaptic
function induced by chronic morphine treatment. The initial steps of opioid action are mediated through the
activation of G protein-linked receptors. As is true for all G protein-linked receptors, opioid receptors activate and
regulate multiple second messenger pathways associated with effector coupling, receptor trafficking, and nuclear
signaling. These events are critical for understanding the early events leading to nonassociative tolerance and
dependence. Equally important are associative and network changes that affect neurons that do not have opioid
receptors but that are indirectly altered by opioid-sensitive cells. Finally, opioids and other drugs of abuse have some
common cellular and anatomical pathways. The characterization of common pathways affected by different drugs,
particularly after repeated treatment, is important in the understanding of drug abuse.

I. INTRODUCTION

The original notion that perturbations in central ner-
vous system (CNS) functions produced by opioid drugs
initiate homeostatic processes leading to the develop-
ment of opioid dependence (191) stimulated attempts to
explain the nature of the relevant adaptations in neurons
responsible for opioid addiction. These studies have fo-
cused on identifying the biological basis of the core fea-
tures of addiction to opioid drugs, particularly tolerance,

the withdrawal syndrome, and compulsive use of the drug
in the face of known harm. With repeated administration
of opioid drugs, adaptive mechanisms are initiated that
result in short-term as well as protracted changes in the
functioning of opioid-sensitive neurons and neural net-
works. One such mechanism is the development of toler-
ance to opioid drugs, such that higher doses are required
to gain the desired effect. Although associative or condi-
tioned tolerance, where morphine treatment is always
paired with a distinctive environment, plays an important
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role and is mediated by specific neural systems in behav-
ing animals (e.g., Ref. 325), nonassociative or cellular
tolerance is a process that has received considerable
attention. There are two very general forms of nonasso-
ciative tolerance that develop in the CNS, isolated tissues,
and cells: one is at the level of the opioid receptor, where
effector coupling is reduced, and the second is at the
cellular, synaptic, and network levels, where counter-
adaptive changes occur to bring about normal function
despite the continued activity of the drug.

The mechanisms involved in the initiation of compul-
sive self-administration of many drugs seem to be seated
in common central pathways, particularly those thought
to mediate endogenous reward. With repeated adminis-
tration of these drugs, adaptive mechanisms are initiated.
One such mechanism is the development of tolerance.
Another results from development of counteradaptations
such that once the drug is removed a sequence of rebound
signs and symptoms are manifested. This withdrawal syn-
drome has short-, long-, and very-long-term features that
may include craving and relapse to drug use long after
acute withdrawal has ended. Thus long-term adaptations
induced by chronic opioid treatment are expressed in the
absence of the triggering drug and indicate long-lasting
change in the functioning of specific neural systems. It is
intriguing that the mechanisms that seem to be responsi-
ble for these adaptive processes in neurons and synapses
are reminiscent of mechanisms involved in “normal” plas-
ticity, such as long-term potentiation (LTP) and long-term
depression (LTD), which are thought to form the cellular
basis of memory. Indeed, recent work suggests that these
adaptive processes at the cellular, synaptic, and network
levels downstream from the receptor may hold the keys to
understanding of addiction.

Perhaps the most important adaptations that develop
as a result of chronic opioid administration occur in neu-
ral systems responsible for the transition from casual to
compulsive drug use. Although tolerance and withdrawal
surely contribute to this process, mechanisms involved in
the initiation of compulsive self-administration of opioids
as well as other major drugs of abuse seem to be seated
in common central neural systems. The mesolimbic do-
paminergic system, thought to have a crucial role in the
rewarding actions of drugs of abuse, is a prime candidate
for mediating this process. There is growing evidence
(reviewed in Refs. 398, 449) that mesolimbic dopaminer-
gic neurons are involved in strengthening formation of
associations between salient contextual stimuli and inter-
nal rewarding or aversive events. The common long-term
adaptations produced by opioids and other drugs of abuse
in this system could enhance these processes and thereby
play a major role in initiation and maintenance of com-
pulsive drug use.

This review focuses on the adaptive changes in cel-
lular and synaptic function induced by chronic morphine

treatment. Opioids are known to be intensely addictive
and share some general actions with other addictive drugs
including psychostimulants and nicotine. One advantage
that studies of the opioid system have over other addic-
tive drugs has resulted from the massive research effort to
find an opioid that is effective for the treatment of pain
but lacks addictive properties. A plethora of compounds
are available with varying affinity and efficacy at all the
known opioid receptor subtypes. Although compounds of
extremely high potency have been produced, the problem
of tolerance to and dependence on these agonists per-
sists.

The initial steps of opioid action are mediated
through the activation of G protein-linked receptors. As is
true for all G protein receptors, opioid receptors activate
and regulate multiple second messenger pathways asso-
ciated with effector coupling, receptor trafficking, and
nuclear signaling. These initial effects are critical for un-
derstanding the early events leading to tolerance and
dependence in cells that have opioid receptors. Equally
important are network changes that occur as a result of
the altered synaptic regulation that may affect down-
stream neurons that may not have opioid receptors.
Finally, opioids and other drugs of abuse have some
common cellular and anatomical pathways. The charac-
terization of common pathways particularly after chronic
drug treatment is an important extension in the under-
standing of drug abuse.

II. INITIAL STEPS OF OPIOID ACTION

A. Receptors/Ligands

Multiple opioid receptors were initially predicted on
the basis of the actions of various alkaloid agonists and
antagonists in whole animal preparations (155, 315). Soon
after the discovery of endogenous opioid peptides, multi-
ple opioid receptors were confirmed functionally using
isolated pharmacological preparations (286). From these
studies three major receptor subtypes were identified: m,
d, and k (161). Highly selective and potent ligands have
been developed for each of the three general receptor
subtypes (Fig. 1). At each of these receptors both agonists
and antagonists exist that are .1,000-fold selective. As is
always the case, however, the selectivity window of any
ligand can be exceeded such that results obtained even
with a highly selective agent may be misinterpreted. The
issue of binding selectivity of ligands at the opioid recep-
tor has been critically examined and reviewed by Gold-
stein (160).

Pharmacological studies have attempted to further
divide opioid receptors in each of the three major sub-
groups. Although suggestive, pharmacologically defined
subclasses of m, d, and k receptors are not well estab-
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lished. The cloning of each of the three major opioid
receptors has done little to support further expansion of
opioid receptor classification (392, 393). There is ;60%
sequence homology between the m, d, and k receptors.
Unless undiscovered opioid receptors are significantly
different from receptors described to date, it appears that
the opioid receptor family has been defined. There are
reports of alternate splice variants, although it is not clear
at what level they are expressed or if they can be distin-
guished pharmacologically (153, 256, 368, 421). The lack
of molecular evidence for more than three opioid receptor
subtypes indicates that further subclassification of recep-
tors may result from mechanisms that may include post-
translational regulation, receptor dimerization, or even
interactions with accessory proteins.

The use of ligands with differing efficacy in tissues
having varying receptor reserve is one potential con-
founding problem in the pharmacological classification of
multiple opioid receptors. The description of the epsilon
opioid receptor in the rat vas deferens is one such exam-
ple. In this preparation b-endorphin decreased the muscle
contraction evoked by electrically stimulating transmitter
release from the nerves. Morphine was ineffective in this
preparation. From this observation the b-endorphin selec-
tive epsilon receptor was characterized (151, 419). Subse-
quent work showed that the receptor reserve of m-recep-
tors in this preparation was low enough that a partial
agonist, such as morphine, acted as a pure antagonist
(442, 427). The characterization of multiple receptors

based on results obtained in more complex tissues using
indirect assays are subject to the same difficulties in
interpretation.

It now appears that many G protein-linked receptors
exist as dimers (108). The most dramatic demonstration
of dimerization of G protein-linked receptors is with the
GABAB receptor, where heterodimerization with two sub-
types of the receptor are required for functional expres-
sion (228, 242, 271, 519). Both k- and d-opioid receptors
have been reported to form homodimers. Recently, het-
erodimers of k- and d-opioid receptors were expressed in
Chinese hamster ovary (CHO), HEK 293, and COS cells
(229). The pharmacological profile of heterodimers was
not completely characterized but differed from the ho-
modimers of both d- and k-receptors. Heterodimerization
of receptors in vivo could account for complex pharma-
cology even if there is only a single gene for each receptor.

The cellular and anatomical distribution of opioid
receptors is important for the identification of neuronal
systems and local networks involved in the initiation of
drug action and the subsequent development of adapta-
tions resulting in repeated drug use. Distinct distributions
and developmental patterns of receptor and mRNA sub-
types have been identified throughout the neuroaxis as
well as in paracrine and exocrine tissues (14, 15, 307, 308,
547, 548) . The widespread occurrence of these receptors
indicates that opioids have the potential for affecting
multiple systems, both nervous and hormonal. The cellu-
lar distribution of m- and k-receptors seems to be largely

FIG. 1. An illustration of the selectiv-
ity windows of some commonly used
opioid agonists and antagonists, deter-
mined in an expression system (392).
Top: compounds tht are selective for
each of the opioid receptors. Note that
although nor-BNI is highly selective, the
inhibition constant (Ki) at m-receptors is
;3 nM. Bottom: the selectivity of the
endogenous opioids and other com-
monly used opioids. Again note that
none of the endogenous opioids show a
high degree of selectivity. DAMGO,
[D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin;
nor-BNI, norbinaltorphimine; CTAP, H-D-
Phe-c[Cys-Tyr-D-Trp-Arg-Thr-Pen]-Thr-
NH2; DPDPE, [D-Pen(2),(5)]-enkephalin.
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along the plasma membrane, both at somata as well as
dendrites and nerve terminals. Receptors are generally
found in perisynaptic areas, rather than in subsynaptic
sites (336). The d-receptor differs in that it is most often
found within cells associated with vesicles (547). The
activity-dependent redistribution of both k- (432) and
d-receptors (R. Elde, personal communication) from ves-
icles to the plasma membrane suggests that the localiza-
tion of receptors is not static and may vary considerably
with activity. The identity and distribution of receptor
subtypes in local circuits will be discussed in specific
sections on neuronal systems.

B. Second Messengers/Effectors

Activation of any of the three opioid receptor sub-
types produces common cellular actions. Each receptor is
coupled to pertussis toxin-sensitive G proteins, although
some coupling to the pertussis toxin-insensitive G protein
Gz has also been recognized (see Ref. 99 for review). The
profile of coupling of the three opioid receptors to the
spectrum of G proteins is similar, although subtle differ-
ences have been identified (99). The most commonly
reported actions include inhibition of adenylyl cyclase,
activation of a potassium conductance, inhibition of cal-
cium conductance, and an inhibition of transmitter re-
lease (Fig. 2). More recent observations have extended
the actions of opioids to include the activation of protein
kinase C (PKC), the release of calcium from extracellular
stores, the activation of the mitogen-activated protein
kinase (MAPK) cascade, and the realization that receptor
trafficking plays an important role in receptor function.

1. Inhibition of adenylyl cyclase

Until recently, nothing was known of the physiolog-
ical consequences of the acute inhibition of adenylyl cy-
clase by opioids. Two effects have now been identified:
one is mediated by the modulation of a voltage-dependent
current (Ih), which is also termed the pacemaker current
(205, 471). This cation nonselective current is activated at
hyperpolarized potentials to cause an inward current that
depolarizes the membrane potential toward threshold.
The voltage dependence of this current is regulated by
cAMP, being activated at less negative potentials when
cAMP levels are elevated (204). Opioids shift the voltage
dependence to more negative potentials by decreasing
intracellular cAMP. This inhibition was most easily ob-
served after the activation of adenylyl cyclase with fors-
kolin or PGE2 (205) but has also been observed without
prior activation (471). The consequence of this action of
opioids was to decrease the amplitude of the inward
current that drives spontaneous activity and thus de-
creases excitability. This action of opioids could have
been predicted based on work done on the pacemaker
current in sinoatrial nodal cells of the heart where the
activation of M2 muscarinic receptors shifted the voltage
dependence of Ih through an inhibition of adenylyl cy-
clase (121). A family of these cation channels has now
been cloned, some of which show the same cAMP-depen-
dent changes in voltage dependence (152, 289, 412). A
similar effect of opioids has also been observed on a
tetrodotoxin-insensitive, cAMP-sensitive sodium current
in cultured sensory neurons (158). Activation of adenylyl
cyclase with prostaglandin E increased a sodium current
that was depressed by [D-Ala2,N-Me-Phe4,Gly5-ol]-en-

FIG. 2. An illustration of the best-characterized
pathway of effector activation of opioids. Three pri-
mary classes of effectors include the inhibition of ad-
enylyl cyclase, inhibition of vesicular release, and in-
teractions with a number of ion channels. These
effectors are affected by both the GTP-bound form of
the a-subunit as well as free b/g-subunits of pertussis
toxin-sensitive G proteins. GIRK, G protein inwardly
rectifying conductance.
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kephalin (DAMGO). This effect, similar to the decrease in
Ih, would be expected to reduce excitation caused by
agents that are thought to mediate hyperalgesia.

The second consequence of the inhibition of adenylyl
cyclase was an inhibition of transmitter release that was
dependent on the activation of adenylyl cyclase (86, 203,
430). Previously there was no indication that the inhibi-
tion of adenylyl cyclase affected transmitter release. Un-
der conditions where adenylyl cyclase was activated and
caused an increase in transmitter release through activa-
tion of cAMP-dependent protein kinase (PKA), opioids
decreased transmitter release via a PKA-dependent mech-
anism. This action of opioids was not observed at all
opioid-sensitive synapses, which may suggest differential
distribution of adenylyl cyclase isoforms at individual
synapses (see sect. IIIB4).

An activation of adenylyl cyclase by opioids has been
reported in both primary afferent neurons (105) and the
olfactory bulb (362). Studies in the olfactory bulb indicate
that the pA2 for naloxone was ;8 [dissociation constant
(Kd) 5 10 nM], suggesting that this response was medi-
ated through activation of d-opioid receptors (362). The
increase in adenylyl cyclase activity was not affected by
pretreatment with cholera toxin and was blocked with
pertussis toxin. More recently, the same group has found
that the increase in adenylyl cyclase activity was medi-
ated by the release of b/g-subunits from pertussis toxin-
sensitive G proteins (360). A similar mechanism for the
opioid activation of adenylyl cyclase was proposed in a
study using a membrane preparation of longitudinal mus-
cle-myenteric plexus from guinea pigs chronically treated
with morphine (72). Thus it appears that the opioid reg-
ulation of adenylyl cyclase is dependent on the isoform
under study and the absence or presence of coactivated
Gsa. In the olfactory bulb it appears that the conditions
are such that acute administration of opioids can activate
the cyclase, whereas in other tissues, this response is
observed only after adaptations induced by chronic mor-
phine treatment.

2. Activation of potassium conductance

Opioids have been shown to activate at least three
separate potassium conductances. The most commonly
observed is the G protein-activated inwardly rectifying
conductance (GIRK; Fig. 3, Table 1). All three opioid
receptors have been shown to activate this conductance.
The second messenger pathway is membrane delimited,
mediated by a pertussis toxin-sensitive G protein (7), and
it is presumed that the potassium conductance is acti-
vated by the b/g-subunits (212). Rapid application and
washout of opioids allowed the determination of the ki-
netics of opioid action using acutely dissociated cells
(202). The activation of the potassium conductance had a
latency to onset of 50–100 ms and a time constant of

activation of ;700 ms, which is similar to that observed
for other receptors coupled to GIRK channels (202, 444,
445). The termination of the GIRK current was dependent
on the agonist applied. The rate of recovery was slower
when higher affinity agonists were used, suggesting that
receptor unbinding may be the rate-limiting step for de-
activation.

The coupling of receptor to this potassium conduc-
tance was quite dependent on the experimental condi-
tions. Whereas in brain slice experiments morphine pro-
duced an increase in potassium conductance that was
equivalent to that induced by the peptide agonists
DAMGO and [Met5]enkephalin, it was an antagonist when
tested in isolated cells. Under the same conditions, how-
ever, morphine had an agonist action on the inhibition of
calcium currents. Thus it appears that the coupling of
opioid receptors to GIRKs may be less efficient than to
other effectors (202).

Opioids have also been shown to activate a voltage-
dependent potassium conductance in acutely dissoci-
ated cells from hippocampus (526) and in brain slices
(295). The activation of a voltage-dependent potassium
conductance was also suggested based on the blockade
of opioid inhibition of transmitter release by 4-amino-
pyridine and dendrotoxin (see sect. II B4). In addition,
opioids have been reported to activate the BK calcium-
sensitive potassium conductance (490). This effect,
coupled with recent reports of opioid-induced calcium
release from internal stores (100, 217, 219, 475, 476),
indicates the diversity of opioid action, which has been
recognized to occur with other G protein-coupled re-
ceptors.

3. Inhibition of calcium conductance

There are many examples of the inhibition of calcium
currents by activation of all opioid receptor subtypes
(Table 1). The inhibition of high-threshold calcium cur-
rents by opioids, in common with other receptors linked
to pertussis toxin-sensitive G proteins, 1) is membrane
delimited, 2) is mediated by the b/g-subunits of G pro-
teins, 3) decreased the rate of current activation such that
the inhibition was greater immediately after the voltage
step, and 4) showed relief of inhibition following a depo-
larization to positive potentials (521). The kinetics of
activation of this effect of opioids were similar to that
reported for the activation of potassium conductance,
having a latency of onset of ;150 ms and peaking in ;5 s
(Fig. 3, Ref. 521).

4. Inhibition of transmitter release

The opioid inhibition of acetylcholine release in the
guinea pig ileum and ATP release in the vas deferens has
been used as pharmacological assays for many decades
(187, 265, 371). In various peripheral preparations from
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different species, the activation of all three receptor sub-
types has been found to cause inhibition of transmitter
release (264, 318, 507). The activation of potassium con-
ductance and/or the inhibition of calcium conductance
and not the inhibition of adenylyl cyclase have been ar-
gued to account for this action (35, 355, 415), although

recent work suggests that under some conditions the
inhibition of adenylyl cyclase can also account for some
of the decrease in transmitter release (see sect. III B).
Direct inhibition of the release machinery, independent of
potassium and calcium conductances, has also been re-
ported (65).

Depending on the site, opioids inhibit release of ex-
citatory and/or inhibitory transmitters (Table 1). Opioid
inhibition of GABA release in local circuits, first observed
in the hippocampus, has become a common observation
that accounts for indirect excitatory, or disinhibitory, ef-
fects of opioids (351, 549). Opioids caused direct hyper-
polarization of interneurons, thus decreasing excitability
of these cells (296). In addition, spontaneous quantal
release of GABA from terminals was decreased by opi-
oids, suggesting that opioids also acted directly on axon
terminals to decrease the probability of GABA release
(92). A similar disinhibitory mechanism mediated by opi-
oids acting on local circuits has now been described in
brain regions where the local circuitry is not as well
defined, such as the raphe magnus (370), ventral tegmen-
tal area (225), periaqueductal gray (PAG) (498, 499), and
dorsal raphe (226, 227). This indirect action of opioids on
output neurons from nuclei such as the VTA and PAG may
be critical in the understanding of circuit adaptations in
response to chronic morphine treatment.

Of equal significance is the fact that transmitter re-
lease is the result of a complex series of events with
numerous protein-protein interactions such that there are
multiple sites of potential regulation. Opioid receptors are
one of a vast number of G protein-linked receptors that
modify transmitter release. Given the potential interac-
tions between these receptors and the effects of prior
activity in any given terminal, the effects of opioids may
vary considerably. Some of the consequences of the re-
ceptor interactions have been identified in the form of

FIG. 3. The kinetics of opioid action on potassium and calcium
conductances are similar. A: activation of opioid receptors on actuely
isolated locus coeruleus (LC) neurons increases a potassium conduc-
tance with a time constant between 0.6 and 0.8 s (bottom trace; Ref. 202).
The opioid activation of the potassium currents is much slower than the
time course of solution exchange as illustrated in the top trace. B: time
course of opioid action on potassium and calcium currents is compara-
ble. Top traces show the voltage-clamp protocol. The traces below are
superimposed current traces carried out in the absence and presence of
[Met]enkephalin (ME) and showing an inward current at 260 and 280
mV and a decrease in the inward (calcium) current measured at 0 mV.
The sharp inward current seen at the start of the step to 0 mV is a
sodium current (no tetrodotoxin). The plot below shows the time course
of these actions. The increase in potassium conductance and the inhi-
bition of calcium current are mirror images. C: the onset of opioid
inhibition of calcium current (ICa) measured in outside-out membrane
patches from primary afferent neurons (521). With the rapid application
of DAMGO (1 mM), there was a delay of 150 ms before any inhibition,
and the time course of inhibition was fit by an exponential having a time
constant of 1.3 s. [From Wilding et al. (521). Copyright 1995 by the
Society for Neuroscience.]
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modulation of activity-dependent plasticity such as post-
tetanic potentiation, LTP, and LTD.

5. Activation of protein kinase C

A long-term, selective augmentation of N-methyl-D-
aspartate (NMDA)-mediated glutamate currents by acti-
vation of m-opioid receptors was observed in brain slices
of trigeminal nucleus (80). This augmentation was mim-
icked by phorbol esters and blocked by the peptide inhib-
itor of protein kinase C (PKC). It was concluded that
opioids activated PKC, which then increased the conduc-
tance activated by NMDA receptor agonists. This was
the first and remains the strongest evidence that opioids
augment postsynaptic glutamate currents by a mecha-
nism involving the activation of PKC. There have, how-
ever, been more recent studies showing augmented

TABLE 1. Opioid receptors and effectors

Effector Receptor Area/Cell Reference No.

GK(GIRK) m Locus coeruleus 11, 202, 326, 374,
485, 522, 523

Substantia gelatinosa 170, 414, 540
PAG, medulla 84, 124, 178, 184,

365, 370
Hippocampus 296, 470, 471,

526
Nigra/VTA 225, 273
Hypothalamus 76, 241, 248, 285,

339
Striatum 214
Thalamus 55
Amygdala 462
Parabrachial 88
Myenteric 146
Xenopus oocytes 267

d Striatum 214
Submucous plexus 324, 356, 478
Cingulate cortex 474
Hippocampus 470
Vestibular 463
Xenopus oocytes 199

k Substantia gelatinosa 169
Raphe magnus 369
Xenopus oocytes 188, 199, 294

GK(Ca) Adrenal chromaffin 490
GK(voltage) Hippocampus 295, 331

Supraoptic 339
GCa m Primary afferent 177, 228, 327,

354, 407, 416,
417, 446, 472,
521

Parasympathetic 4
Locus coeruleus 97, 202
PAG 98, 251
Supraoptic 447
Striatum 451
NG108-15 190, 217, 218,

332
GH3 381
SH-SY5Y 424

k Primary afferent 167, 461
Purkinje 238
Neuroendocrine 406
Xenopus oocytes 237
GH3 380
PC12 473

d Primary afferent 2
Parasympathetic 335
Striatum 451
NG108-15 332
SH-SY5Y 483

GNa m Primary afferent 158
Gcation m Primary afferent 205

LC 11
PAG E. E. Bagley and

M. J. Christie,
unpublished
data

Hippocampal 471
Synaptic inhibition

Glutamate m LC 359
Spinal cord 57, 157, 168, 193,

213, 239
PAG 83, 394, 498
Hippocampus 65, 66, 103, 131,

410

TABLE 1. Continued.

Effector Receptor Area/Cell Reference No.

Hypothalamus 131
Striatum 214
Accumbens 54, 312, 542
VTA 311

k LC 317, 379
Hippocampus 123, 147, 209, 215,

410, 437–439, 503,
504, 513

Hypothalamus 131
Substantia gelatinosa 389
Striatum 391

d Spinal cord 157
Striatum 214
Accumbens 542
NTS 394
Cingulate cortex 474

GABA m Amygdala 462
Raphe magnus 370
Accumbens 85, 450, 542; J. M.

Brundege and
J. T. Williams,
unpublished data

PAG 83, 87, 394, 499
Hippocampus 70, 92, 145, 216,

275, 290–292, 526,
527, 536

Substantia gelatinosa 168, 258
VTA 225, 430

k VTA 430
d Amygdala 462

Hippocampus 92, 145, 216, 290–
292, 536

Substantia gelatinosa 168, 258
Accumbens/GP 450, 542
NTS 394

Glycine Substantia gelatinosa 168
Acetylcholine Hypogastric 399

GK(GIRK), G protein inwardly rectifying potassium conductance;
GK(Ca), calcium-activated potassium conductance; GK(voltage), voltage-
activated potassium conductance; Gcalcium, calcium conductance; GNa,
sodium conductance; Gcation, cation conductance; PAG, periaqueductal
gray; VTA, ventral tegmental area; LC, locus coeruleus; NTS, nucleus
tractus solitarius.
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NMDA receptor-mediated excitatory postsynaptic cur-
rents (EPSCs) by m-opioid agonists in both the nucleus
accumbens and hippocampus (312–314, 384). This aug-
mentation was not observed in the locus coeruleus (LC)
(359), suggesting that it may be dependent on the makeup
of NMDA receptor subunits and/or the isoforms of PKC
present on any given cell type.

The activation of PKC by opioids appears to result
from the activation of phospholipase C and/or phospho-
lipase A2, which is thought to result from an interaction of
b/g-subunits of pertussis toxin-sensitive G protein and
may require coactivation with the a-subunits of pertussis
toxin-insensitive G proteins (144, 342, 358, 441). The re-
sults suggest that in order for opioids to have a robust
effect, coactivation with Gqa subtype G proteins is re-
quired. A similar pathway is also thought to mediate the
release calcium from inositol 1,4,5-trisphosphate (IP3)-
sensitive stores (see sect. IIB6).

6. Release of calcium from internal stores

Initial studies demonstrating a transient increase in
intracellular calcium in NG108–15 cells were unexpected
(217). Most of the rise in calcium found in both NG108–15
and ND8–47 cells was blocked with dihydropyridine cal-
cium channel blockers or removal of extracellular cal-
cium, suggesting that calcium entry across the plasma
membrane was the primary source (217, 475). Further
investigation in both NG108–15 and SH-SY5Y cells indi-
cated that a component of the increase in calcium re-
sulted from release from intracellular stores (100, 219).
This effect of opioids was sensitive to pertussis toxin,
depletion of stores by thapsigargin, and an inhibitor of
phospholipase C, U73122 (219). Microinjection of a pep-
tide that binds to b/g-subunits (QEHA) blocked the opi-
oid-induced increase in calcium in NG108–15 cells (539).
Injection of a peptide that blocked bradykinin-induced
activation of Gqa did not block the opioid-induced in-
crease in calcium (539). Thus the interaction of b/g-sub-
units with phospholipase was not dependent on coactiva-
tion of Gqa, although other potential a-subunits were not
excluded. In experiments on SH-SY5Y cells, the increase
in intracellular calcium was dependent on coapplication
of agonists (muscarinic) that activated receptors coupled
to phospholipase C (100). Taken together, it appears that
the opioid activation of phospholipase results from an
interaction with b/g-subunits of pertussis toxin-sensitive
G proteins and subsequent production of IP3 and diacyl-
glycerol (DAG), which release stores of calcium or acti-
vate PKC, respectively. This action of opioids is either
significantly enhanced or completely dependent on the
coactivation of receptors that are directly coupled to
phospholipase. Although opioids have been shown to in-
crease intracellular calcium in primary afferent neurons

(476), the signaling pathway for this effect has not been
identified.

7. Receptor trafficking

With the cloning of opioid receptors has come a
better understanding of the mechanisms that regulate the
life cycle of receptors. It is clear that opioid receptors, as
is the case with many G protein-linked receptors, are not
static and cycle to and from the plasma membrane. Most
opioid binding studies were primarily directed toward
sites on the plasma membrane in both neuronal and non-
neuronal tissues; however, opioid binding sites in intra-
cellular compartments have been recognized for some
time (32). These binding sites were considered to be
newly synthesized or recycled receptors. On the basis of
studies using antibodies directed at each of the opioid
receptors, it was realized that significant immunoreactiv-
ity for both the d- and k-opioid receptors was associated
with intracellular compartments, particularly in axonal
projections (432, 547). From this observation, it was hy-
pothesized that the intracellular receptors were associ-
ated with a regulated secretory pathway in terminals.
k-Opioid receptors were found on vesicles in nerve ter-
minals of vasopressin-containing neurons and were trans-
located to the plasma membrane after a physiological
stimulus (432). Interestingly, 1 h after the stimulus, the
receptors disappeared from the plasma membrane and
reappeared in the vesicular compartment. Thus receptors
found in vesicular membranes could be both newly syn-
thesized and/or recycled. Although it has not been deter-
mined if the receptors freshly inserted into the plasma
membrane were functional, this observation suggests an
interesting form of feedback inhibition that would be
dependent on prior activity in any given terminal.

Receptor trafficking initiated by agonist binding and
internalization through the endosomal pathway may be
involved in desensitization and/or the initiation of nuclear
signaling (see below). The COOH-terminal tail of opioid
receptors, as other G protein-linked receptors, regulates
the extent and efficiency of internalization. The events
leading to internalization are based primarily on the b-re-
ceptor model (Fig. 4). Upon agonist occupation, a recep-
tor kinase (BARK2) phosphorylates the receptor, uncou-
pling the G protein and increasing the affinity of the
receptor for arrestin (269). This triggers a series of events
that carry the receptor complex to clathrin-coated pits
and into an endosomal compartment.

Internalization of the d-opioid receptor was sug-
gested to depend on phosphorylation of the COOH termi-
nal as indicated by experiments using either point muta-
tions, at Ser-344 and Ser-363 or COOH-terminal truncations
(484). Similar experiments were carried out using the two
alternatively spliced isoforms of the m-receptor, MOR1
and MOR1B (256). The MOR1B isoform is the shorter of
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the two and lacks one phosphorlyation site, Thr-394. The
MOR1B receptor was more resistant to desensitization,
more rapidly internalized, and recovered from desensiti-
zation more rapidly than MOR1. It was also suggested that
MOR1B was internalized constitutively. Thus it appears
that regulation of internalization is highly dependent on
the COOH-terminal tail.

Internalization is also agonist dependent (245, 516).
The amount of internalization induced by a series of
agonists was compared with efficacy in standard signal
transduction assays using the m-opioid receptor trans-
fected into HEK 293 cells (516). Morphine was among the
agonists that did not cause internalization. Morphine is
well known as a partial agonist so the lack of activity was
not surprising (266). Methadone, another partial agonist
like morphine, resulted in efficient internalization (516).
In addition, morphine was capable of causing internaliza-
tion under conditions where the coupling efficiency was
increased by overexpression of GRK2 (547). Finally, with
the use of a chimera of the m-receptor combined with the
COOH terminus of the d-opioid receptor, morphine medi-
ated internalization in both a cell line and in primary
cultures of hippocampal cells, suggesting that this portion
of the receptor was responsible for lack of morphine-
induced internalization (516). Given this result, it would
be interesting to examine the effect of morphine on the

MOR1 and MOR1B splice variants. Internalization of d-re-
ceptors in NG108–15 cells was facilitated by overexpress-
ing arrestin, such that morphine was capable of causing
internalization. It therefore appears that morphine is a
differentially weak partial agonist at producing internal-
ization. The quantification of relative efficacies of mor-
phine and other opioids was incomplete in these experi-
ments, relying only on maximal responses. It is therefore
not yet clear how much the relative efficacies of mor-
phine, methadone, and other opioids differed for different
signal transduction processes. Similarly, differential rank
orders of efficacy of DAMGO, methadone, L-a-acetyl
methadol, morphine, and buprenorphine were previously
reported for m-receptor phosphorylation, potassium chan-
nel activation, and desensitization (541). The results of
these studies suggest that the efficiency of agonists to
couple with different effectors varies and that coupling to
mechanisms responsible for phosphorylation and inter-
nalization is rather inefficient. It appears that all of the
endogenous agonists and a number of alkaloid agonists
(but not others) are potent activators of internalization
regardless of their ability to induce G protein activation.
Similar interpretations have been made for phosphoryla-
tion of m-receptors by PKA (71) and efficiency of activa-
tion of different G protein a-subunits (150). If this con-
clusion proves correct, then it implies that distinct

FIG. 4. An illustration of the sequence of events leading to receptor internalization. Some but not all (notably
morphine) opioid agonists can activate the pathway. The activated opioid receptor is phosphorylated by a G protein
receptor kinase. The affinity of interaction between this complex and arrestin is increased. The arrestin-bound complex
recruits c-Src adaptor proteins (AP-2 complex) that link arrestin and clathrin to promote endocytosis (reveiwed in Ref.
252).
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m-opioid receptor conformational states exist for cou-
pling to different effectors (96), with the implication that
agonists with selective conformational state profiles can
be developed deliberately.

The inability for morphine to cause internalization
under most circumstances may also be an important issue
in the eventual understanding of the cellular, synaptic,
and network effects of chronic morphine treatment.
Given the idea that receptor internalization may be a
mechanism that mediates receptor turnover and resensi-
tization, the inability of morphine to mediate this basic
response could result in a chronic receptor activation.
The continuous stimulation of transduction pathways
may recruit signaling pathways to cause downstream ad-
aptations (counteradaptations) with repercussions unre-
lated to direct actions of opioids.

8. Nuclear signaling

The regulation of cellular events through altered ex-
pression of proteins signaled by the chronic activation of
opioid receptors is critical for understanding tolerance
and dependence to opioids. The signaling pathways that
lead to altered genetic expression are simply another
effector system. Unlike membrane delimited effectors
such as potassium and calcium channels, the extracellular
signal-regulated kinase (ERK)/MAPK pathway that medi-
ates nuclear signaling involves multiple protein-protein
interactions, translocations, and phosphorylation events
(Fig. 5). The activation of this pathway by opioids, like
other opioid effectors, is sensitive to pertussis toxin. The
kinetics of activation are longer than that for other effec-
tors but occur over a period of several minutes to 1–2 h.

It appears that there are at least three general path-
ways following the activation of Gi/Go-linked receptors
that eventually converge on the activation of MAPK. One
pathway involved ßg-subunit activation of phosphatidyl-
inositol 3-kinase, which activates MAPK activity through a
series of phosphorylation steps including the activation of
c-Src (139, 382, 383). The second pathway involves phos-
phorylation of the receptor with a receptor kinase; the
translocation and binding of arrestin to the receptor is
followed by translocation of c-Src to the membrane be-
fore internalization of this receptor complex through
clathrin-coated pits (198, 293). Once internalized, the
complex activates ERK, which is translocated into the
nucleus to affect gene regulation by any of a number of
transcription factors (250). In the CNS, ERK/MAPK can be
activated by PKA (200). The PKA-dependent activation of
ERK/MAPK by opioids may not be important during acute
opioid administration but may be facilitated by an upregu-
lation of adenylyl cyclase activity with chronic treatment.
Activated ERK/MAPK can phosphorylate multiple targets
in the cytoplasm and in the nucleus (i.e., transcription
factors such as CREB).

This second pathway is significant in that internaliza-
tion is a necessary step. Morphine, an agonist that does
not activate internalization, would therefore be ineffec-
tive at activating the MAPK pathway, at least through this
mechanism. It is interesting to note that, with one excep-
tion (279), all reports on the activation of the MAPK
pathway have used agonists, such as etorphine, DAMGO,
[D-Pen(2),(5)]-enkephalin (DPDPE) and U69593, that ef-
fectively cause receptor internalization (30). In the study
where morphine did activate MAPK activity, the activa-
tion was transient relative to that caused by etorphine,
DAMGO, and PLO17 (279). In an in vivo study where
phosphorylated MAPK was examined immunohisto-
chemically after acute and chronic treatment of animals
with morphine, the distribution of immunoreactivity was
unchanged by acute morphine treatment (420). With-
drawal from chronic morphine treatment precipitated by
injection of naloxone, however, produced a robust in-
crease in phospho-MAPK immunoreactivity in specific
brain regions, among them the LC. Taken together, these
observations suggest that in many systems morphine
alone may be ineffective at activating the MAPK pathway.
After chronic morphine treatment, however, adaptive
mechanisms may facilitate the activation of MAPK. For
example, in many brain areas, MAPK can be increased by
excitatory transmission (17). The increased release of
glutamate in the LC during withdrawal could be a trigger
that activates the MAPK pathway.

III. CELLULAR ADAPTATIONS INDUCED

BY CHRONIC MORPHINE TREATMENT

A spectrum of cellular adaptations resulting from
chronic exposure to opioids is responsible for nonasso-
ciative tolerance and physical dependence. Humans and
experimental animals can develop profound tolerance to
opioids over periods of several weeks of escalating
chronic treatment. Thus hundreds of times the normal
analgesic dose of morphine have been reported to pro-
duce only mild physiological effects in some addicts (211)
and chronic pain patients (166). Tolerance development
involves a number of distinct cellular and neural pro-
cesses (see below). The desensitization/downregulation
mechanisms involved in tolerance are necessarily passive
and do not engage the rebound mechanisms that could
underlie maintenance of drug dependence and the opioid
withdrawal syndrome. The latter require development of
counteradaptations as outlined as follows: 1) acute de-
sensitization of opioid receptor to effector coupling and
internalization that develops during and abates shortly
(minutes to hours) after exposure to agonists; 2) long-
term desensitization of receptor to effector coupling and
downregulation of receptors that slowly develop and then
persist for many hours to days after removal of agonists;
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3) counteradaptations of intracellular signaling mecha-
nisms in opioid sensitive neurons; and 4) counteradapta-
tions in neuronal circuitry.

Two phases of development of and recovery from
tolerance can be distinguished in humans and experimen-
tal animals. The onset of the rapid phase of tolerance
occurs within minutes. It is difficult to quantify in whole
animals but dissipates with a time course approximating
the elimination of opioids (104). The slowly developing
phase dissipates over several weeks regardless of the
opioid used for induction (104). The rapid phase seems to

predominantly involve acute desensitization, but counter-
adaptations can also play a role (see sect. III). The slow,
persistent phase of tolerance involves the latter three
mechanisms that are less fully understood than acute
desensitization. The relative contributions of each of the
above mechanisms to net tolerance development depends
on the physiological system in question. However, the
mechanisms involved have important implications in de-
termining the extent of tolerance development, which
varies greatly between different organ systems. The fol-
lowing will focus primarily on mechanisms identified for

FIG. 5. Multiple pathways can lead to the activation of the extracellular signal-related kinase (ERK)/mitogen-
activated protein kinase (MAPK) transduction cascade by opioids applied acutely or after chronic treatment. Three main
transduction pathways can cause the activation of ERK/MAPK during acute application of opioid agonists. b/g-Subunit
release could 1) stimulate phospholipase C and cause the release of calcium from internal stores and the production of
diacylglycerol, which will in turn activate protein kinase C; 2) recruit to the membrane proteins such as Ras-GRF; and
3) activate the phosphatidylinositol 3-kinase (PI 3-kinase). The ERK/MAPK cascade can be blocked at the level of the
MEK by pharmacological agents such as PD-98059 or by phosphatases. Activated ERK/MAPK has multiple targets,
including nuclear transcription factors (such as CREB), cytoplasmic enzymes (including tyrosine hydroxylase), cytoskel-
etal proteins, and ion channels. Because morphine causes no or little internalization of m-receptor, it is possible that the
MAPK pathway is under permanent opioid stimulation during chronic drug treatment. After withdrawal, the adenylyl
cyclase superactivation could now lead to the activation of the ERK/MAPK cascade through intracellular elevation of
cAMP and activation of the protein kinase A (PKA). PIP2, phosphatidylinositol 4,5-bisphosphate; IP3, inositol 1,4,5-
trisphosphate; PKC, protein kinase C.
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m-receptor desensitization and downregulation because
actions at m-receptors are of major relevance for toler-
ance development. The involvement of k- and d-receptor
desensitization and downregulation in tolerance develop-
ment is unclear and has not been extensively studied.

A. Desensitization, Internalization,

and Downregulation of Receptor

to Effector Coupling

1. Acute desensitization

Acute desensitization may be homologous, heterolo-
gous, or can involve both mechanisms. Homologous
desensitization is by definition restricted to the opioid
receptor occupied by the agonist and its specific interac-
tions with signal transduction cascades. In contrast, het-
erologous desensitization generalizes to other receptors
present in the same cells, and/or other elements of the
signal transduction cascade such as G protein and ion
channel activity. As discussed below, homologous desen-
sitization can potentially involve phosphorylation of oc-
cupied receptors, occupancy-dependent protein-protein
interactions, and/or occupancy-dependent compartmen-
talization and internalization. Homologous desensitiza-
tion of m-receptors has been described in a variety of
cellular models using different end points. Although a
general consensus on the mechanisms involved is emerg-
ing, both qualitative and quantitative differences have
been reported in various experimental systems. These
differences may arise from expression of diverse signaling
elements, e.g., G protein receptor kinases, the stoichiom-
etry of signaling elements, and the end points measured.

Several mechanisms of homologous desensitization
of m-receptors have been recognized. The most thor-
oughly studied for m-receptor desensitization and inter-
nalization involve G protein-coupled receptor kinase
(GRK)-mediated receptor phosphorylation that promotes
the binding of b-arrestin proteins. This process not only
uncouples opioid receptors from their cognate heterotri-
meric G proteins, but also targets them for endocytosis.
The processes by which this is thought to occur have been
reviewed elsewhere (58, 277) and are outlined in Figure 4.
Agonist binding to the receptor promotes a conforma-
tional change that results in G protein activation and
dissociation from the receptor. Free G protein b/g-sub-
units facilitate translocation of GRKs to the membrane
where they phosphorylate serine and threonine residues
in the COOH-terminal region. The phosphorylated recep-
tor binds with high affinity to the cytoplasmic protein
arrestin, which prevents association of inactive G pro-
teins with the receptor and initiates internalization. Many
of the details of this scheme have been confirmed for the
m-receptor, but a number of contentious issues remain.

Phosphorylation of the m-receptor by GRKs does not

appear to be necessary in all cases for desensitization to
occur in neurons and some test systems, implying that
other mechanisms mediating desensitization exist. Trun-
cation of the COOH-terminal tail of the m-receptor, the
likely region for interaction with and phosphorylation by
GRKs, greatly attenuates desensitization. When reconsti-
tuted in Xenopus oocytes, homologous desensitization of
m-receptor-mediated coupling to potassium currents was
dependent on GRK2 (268). However, the desensitization
kinetics were much slower (tens of minutes vs. minutes)
than observed in CNS neurons (364), suggesting that com-
ponents of the signaling cascade or stoichiometry of sig-
naling elements were inappropriate. Other studies in re-
constituted systems have also suggested that GRK
phosphorylation and activation of MAPK pathways are
essential for m-receptor desensitization to occur (382,
383). Inhibitors of GRK-mediated phosphorylation such as
Zn and heparin should be able to address the issue of GRK
requirement, but unfortunately, they disrupt many as-
pects of cell function. Nonetheless, these inhibitors have
generally not been shown to reduce desensitization (27,
364). In LC neurons, rapid (t 5 120 s), homologous de-
sensitization of coupling between m-receptors and in-
wardly rectifying potassium channels was not affected by
heparin or staurosporine (180, 364), suggesting that GRK-
dependent processes are not involved. Dominant negative
GRK mutants (kinase activity deficient) should provide
more conclusive results but have not yet been used to
examine m-receptor desensitization. Desensitization of
some other GPCRs, e.g., adenosine A2a and A2b receptors,
were greatly inhibited by dominant negative GRK2, but
others such as prostanoid and somatostatin receptors
were completely unaffected (27). GRK-b/g inhibitory pep-
tides also failed to inhibit somatostatin receptor-mediated
desensitization (27). The possibility that subtype specific
interactions of different G protein b/g-subunits with the
MAPK signaling cascade (109) cannot adequately resolve
these difficulties because receptor coupling through the
same elements in single cells showed different results.
Desensitization of m2 muscarinic receptors required the
presence of either authentic GRK2 or the dominant neg-
ative form (431), suggesting that binding of GRK2 to the
receptor is sufficient to cause desensitization in the ab-
sence of phosphorylation and initiation of internalization
processes. However, it was not established whether or
not desensitization was homologous in those studies, so
the importance of the mechanism is still unclear. En-
hanced morphine antinociception in mice lacking b-arres-
tin-2 (37) is suggestive of an involvement of GRK-depen-
dent mechanisms in m-receptor desensitization, but it has
not been established that rapid desensitization is dis-
rupted in these knockouts.

Other phosphorylation-dependent mechanisms of
m-receptor desensitization have also been examined. Al-
though PKA-mediated desensitization occurs in some G
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protein-coupled receptor systems, this has not been es-
tablished for the m-receptor. Inhibitors of PKA signaling
have generally had no effect on desensitization (180, 183,
333, 344, 364) and activators of PKA signaling have an
inhibitory effect on desensitization (81, 180), but it is not
clear whether this inhibition was homologous or heterol-
ogous. PKC-mediated phosphorylation of m-receptors has
also been reported to reduce sensitivity to opioids (494,
546), but the process is independent of occupancy by
agonists and therefore is heterologous. Phosphorylation
by calmodulin kinase II of Ser-261/Ser-266 in the third
intracellular loop of the m-receptor has also been impli-
cated in increasing the rate of desensitization (255). The
third intracellular loop of the m-opioid receptor has also
been implicated as a binding site for calmodulin, which
when associated with the receptor reduces coupling to G
proteins (506). However, the functional significance of the
latter observations for signaling and desensitization has
not been characterized. Various other kinases such as
cGMP-dependent protein kinase (323) and casein kinase

(481) have been shown to modulate the activity of other G
protein-coupled receptors, but these have not been exam-
ined for the m-receptor.

It is not yet clear if phosphorylation-independent
mechanisms are involved in initial events of homologous
m-receptor desensitization. The temporal correlation be-
tween desensitization, measured by inhibition of adenylyl
cyclase activity, and at least some types of receptor phos-
phorylation events is poor (129). As indicated above, it is
possible that phosphorylation-independent interactions
of GRKs with m-receptors functionally uncouple G protein
interactions. In LC neurons using coupling to activation of
potassium currents as an end point, m-receptor desensiti-
zation was largely homologous (135, 180, 363) but was not
affected by GRK inhibitors such as heparin or serine/
threonine kinase inhibitors including staurosporine (Fig.
6). The phosphatase inhibitors okadaic acid and micro-
cystin had no effect on onset of desensitization but mark-
edly slowed recovery. The time course of desensitization
was rapid under these conditions with onset and offset

FIG. 6. m-Opioid receptor desensitization and tolerance in locus coeruleus neurons. Top trace is an example
recording of the protocol used to measure acute opioid desensitization. This is a current record of a cell voltage-clamped
at 260 mV. Superfusion of [Met]enkephalin (ME; 300 nM) caused an outward current. Superfusion of ME (30 mM) for
5 min resulted in a peak response followed by a decline to ;50% of the peak. Immediately after washing the high
concentration of ME, the outward current caused by ME (300 nM) increased over a period of 15–25 min to a value close
to that at the beginning of the experiment. Bottom left: a concentration-response curve to normorphine in control and
immediately after a desensitizing treatment with ME (30 mM, 5 min). The dose-response curve is shifted to the right, and
the peak response is reduced. [From Osborne and Williams (363).] Bottom right: a similar experiment done in brain
slices taken from control animals (control) and animals that were treated chronically with morphine. As was observed
with the acute desensitization, chronic morphine treatment shifted the concentration-response curve to the right and
depressed the maximum response. [From Christie et al. (89).] In each experiment, the response to normorphine was
normalized to the outward current induced by a maximal concentration of the a2-adrenoceptor agonist UK-14304. The
conclusion of these experiments was that acute desensitization as well as more long-term tolerance results in a dramatic
decline in m-opioid receptor reserve. The acute desensitization recovers to a large degree within 30 min; however, in
morphine-treated animals, there was little evidence for recovery over a period of 2–6 h.
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time constants of ;3 min. This is comparable to desensi-
tization rates measured by others using electrophysiolog-
ical methods in neurons (e.g., Refs. 27, 333) but are mark-
edly faster than time courses usually measured (when
they have been) in reconstituted systems using electro-
physiological techniques or biochemical measures such
as GTPase activity and inhibition of adenylyl cyclase. The
latter time courses often proceed over periods of several
hours (e.g., Refs. 256, 266, 382, 383). Whether or not these
differences reflect fundamentally different mechanisms
or differences in stoichiometry of elements in native ver-
sus reconstituted systems has not been resolved.

Heterologous desensitization has been described in
both model systems (267) and neurons (135, 353). By
definition, heterologous desensitization generalizes to re-
ceptors and transduction mechanisms distinct from the
one activated by the primary ligand and as such can
represent at the cellular level the compensatory and inci-
dental adaptive mechanisms discussed below. For exam-
ple, heterologous desensitization that involves changes in
the activity of kinases such as PKA and PKC can affect
multiple elements of signal transduction cascades includ-
ing diverse receptors, G proteins, and effectors such as
ion channels.

2. Internalization

It has long been recognized that internalization is not
required for desensitization to occur, but when it does,
the process necessarily affects sensitivity to agonists by
removing surface receptors. Pak et al. (366) demonstrated
that m-receptor desensitization was associated with a loss
of binding sites on the plasma membrane. As discussed
above, agonist-evoked internalization has been observed
for m-receptors in model systems (246, 517) as well as
neurons (246, 455). Internalization occurs predominantly
via clathrin-coated pits. Receptor phosphorylation by
GRKs appears to be a critical event in internalization (64),
although others have suggested that MAPK activation is
critical (382).

A number of groups have examined residues in the
COOH-terminal region of the m-receptor, known to be
essential for internalization via the endosomal pathway.
Pak et al. (367) found that Thr-394 was the primary rec-
ognition site for G protein-coupled receptor kinases, but
Thr-383 was also required for complete agonist-induced
desensitization. The specificity of Thr-394 as the primary
initiation site appears to be dependent on the preceding
acidic amino acid stretch, because a mutant in which
glutamic acid residues at 388, 391, and 393 were replaced
by glutamines the receptor was not internalized. Trun-
cated m-receptors suggested that Ser-356 and Ser-363
were important for agonist-induced internalization of the
receptor but not phosphorylation (59).

Although GRKs and endosomal mechanisms have

been established to play a major role, other internaliza-
tion processes have not been ruled out (337). The impor-
tance of GRK-mediated processes for acute tolerance,
usually studied using morphine (or heroin), is doubtful
because morphine does not induce internalization in vivo.
Speculations that differences in the abilities of different
opioid agonists to induce internalization are related to
their addiction liability or therapeutic value in opioid
management of opioid dependence are intriguing but
have yet to be fully established (516, 541). It is possible
that agonists employed therapeutically in dependency
management, such as methadone, l-a-acetyl methadol
(LAAM), and buprenorphine, have beneficial effects on
adaptive processes because they more readily induce in-
ternalization than morphine (and heroin). As discussed
above, endosomal internalization mechanisms involve de-
phosphorylation, resensitization, and MAPK activation
which initiates nuclear signal transduction cascades that
can influence downstream adaptive processes and may
regulate m-receptor function. Any such mechanisms and
potential therapeutic benefits must be purely fortuitous
because methadone, LAAM, and buprenorphine were de-
veloped for opioid dependency management solely on the
basis of their agonist efficacy, bioavailability, safety, and
plasma half-lives.

3. Long-term desensitization and downregulation

Long-term adaptive processes play a major role in the
capacity of animals and humans to tolerate profoundly
escalating doses of opioids over periods of weeks to
months, but the mechanisms involved have not been fully
resolved. It is not yet clear whether or not the early events
of desensitization and internalization are necessary ante-
cedents or perhaps contribute directly to these longer
term adaptive processes. Where they have been studied,
however, evidence for a direct role is lacking (see below).
Such long-term adaptations presumably involve chronic
functional uncoupling of m-receptors from signaling path-
ways, perhaps as a consequence of counteradaptations
(see below) and/or downregulation of surface receptors.
Early studies of m-receptor density in whole brain or brain
regions following chronic morphine treatment almost in-
variably found no reduction in total number of receptor
binding sites (e.g., Ref. 514). Although some studies of
surface receptors in cultured cells observed downregula-
tion following chronic morphine and other agonists (386,
537, 544), the findings in brain appeared to indicate that
adaptive processes must be targeted at intracellular do-
mains of the receptor involved in coupling with G proteins
and not the density of receptors at the plasma membrane
surface. Radiolabeled opioid ligands used in early studies
could not readily distinguish surface from intracellular
receptors and ligand binding studies are also confounded
by continued occupancy of receptors, during chronic
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treatment. Subsequent to the cloning of m-receptors and
the development of highly selective antibodies, more di-
rect assessment of surface receptor densities has indi-
cated that densities of m-receptors are indeed downregu-
lated in some brain regions after chronic treatment with
morphine (34, 277, 477). In model systems expressing
truncated m-receptors, serine residues were identified in
the COOH-terminal region (Ser-355 and Ser-363) that
were necessary for opioid-induced (etorphine) downregu-
lation (5, 59).

The mechanisms of m-receptor downregulation do
not appear to substantially involve GRK-dependent mech-
anisms. Studies in SH-SY5Y cells have suggested that
m-receptor downregulation is blocked by nonspecific
serine-threonine kinase inhibitors but that a putative
GRK2 inhibitor, suramin, had no effect (130). The absence
of a role for GRK phosphorylation in downregulation is
consistent with similar findings in GRK2 phosphorylation-
deficient b2-adrenoceptor mutants (172). The failure of
morphine to engage endosomal internalization mecha-
nisms is also consistent with a lack of involvement of
GRK because morphine produces similar downregulation
as other agonists (537). Although phosphorylation has
been implicated in the process of downregulation, the
nature of its role remains uncertain. It is possible that
receptor cycling is affected in a GRK-independent fashion
or that kinase activity affects synthesis or degradation
rates.

Studies of m-receptor coupling to proximal cellular
effectors, such as GTPase activity, adenylyl cyclase inhi-
bition, inwardly rectifying potassium channels, or calcium
currents have also found functional uncoupling of recep-
tors from effectors. 35S-labeled guanosine 59-O-(3-thio-
triphosphate) (GTPgS) binding reflects GTPase activity
and is decreased following chronic morphine treatment in
brain, including LC (423, 435) and in cultured cells (130).
Similar results have been reported for coupling of m-re-
ceptors to inwardly rectifying potassium channel currents
(89) and calcium channel currents (97) in LC neurons, and
calcium channel currents in SH-SY5Y cells (249). Where
studied, the uncoupling processes were found to be ho-
mologous. Reduced coupling efficacy could have arisen in
these studies from functional uncoupling of receptors
from G proteins, or a loss of surface receptors. Although
the former was generally assumed on the basis of negative
results from ligand binding studies in brain (see above), a
reduction in surface m-receptor density actually was
found in the only study that directly addressed the issue
(130). It therefore remains uncertain whether or not the
functional uncoupling of m-receptors from proximal effec-
tors widely observed in neurons and model systems arises
solely from a reduction in the density of m-receptors in the
plasma membrane.

In summary, acute desensitization, internalization,
and downregulation of m-receptors all play roles in opioid

tolerance measured at the cellular and synaptic level.
Although these mechanisms can explain the development
of nonassociative tolerance at the cellular level, adaptive
mechanisms that occur with repeated and/or continuous
morphine treatment to mediate associative tolerance are
probably mediated by separate mechanisms (e.g., Ref.
325). The counteradaptive mechanisms not only mediate
forms of tolerance to morphine but are also involved in
opioid withdrawal and dependence. The relative contri-
butions of each process to the extent and persistence of
tolerance in different physiological systems in the behav-
ing organism have not been elucidated. The extent of
tolerance is usually rather small when examined in single
cells (e.g., Ref. 89) compared with tolerance in whole
animals (e.g., Ref. 104). Tolerance at systems levels must
involve interaction of mechanisms of tolerance at molec-
ular, cellular, and neural network levels throughout each
system, but the details of such interactions are completely
unknown.

B. Counteradaptations

Mechanisms subsequent to receptor activation that
adapt to restore function in the presence of drug mediate
a second form of tolerance (222). Tolerance produced by
compensation, by definition, requires the presence of opi-
oid agonists to maintain normal function. The adaptive
responses observed at the cellular, synaptic, and network
levels are therefore the core of acute aspects of opioid
withdrawal. As with tolerance, different processes may
mediate short- and long-term and protracted compensa-
tory changes associated with chronic opioid treatment.
Very-short-term counteradaptations can be observed after
only several minutes of opioid application and abate just
as rapidly (e.g., Refs. 221, 143). As discussed below, long-
term compensatory changes have been most thoroughly
studied.

1. Adenylyl cyclase

The first and best-studied example of tolerance re-
sulting from compensation used the inhibition of adenylyl
cyclase as an assay (46, 425, 426). Acutely, opioids acting
on d-receptors inhibited adenylyl cyclase, but in the con-
tinued presence of morphine, there was an increase (up-
regulation) of adenylyl cyclase activity (46, 425, 426).
When agonist was removed, the compensatory increase in
adenylyl cyclase activity remained. The increased adeny-
lyl cyclase activity was taken as an example of withdrawal
at the cellular level.

Since these early studies, several isoforms of adeny-
lyl cyclase have been identified and classified into three
primary groups based on sequence similarities (102, 329,
330). All these enzymes are differentially regulated by a
number of messenger pathways including calcium, Gia,
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Gsa, Gb/g, and PKC (102, 329, 330). In addition, each
isoform has a distinct anatomical distribution. Three iso-
forms are primarily neuronal, ACI, ACII, and ACV. The
distribution of cells expressing high levels of mRNA for
each subtype has a distinct pattern. Type I is found in the
dentate granule cells of hippocampus, cerebellar granule
cells, and cortex; type V is found almost exclusively in
striatum and nucleus accumbens, and type II is more
diffusely located in cortex, hippocampus, cerebellar gran-
ule cells, and substantia nigra. At the subcellular level, the
distribution seems to be highly localized to synapses
(330). Subunit-selective antibodies have not been used
extensively, limiting the interpretations of exact compo-
sition at many synapses, although suggestions have been
made based on results from in situ hybridization experi-
ments. The high density of immunoreactive substrates
found both pre- and postsynaptically place this highly
regulated molecule that is sensitive to a number of second
messengers in an ideal position to mediate synaptic plas-
ticity.

The sensitivity of various isoforms of adenylyl cy-
clase to opioids was examined in a series of studies done
in COS-7 and CHO cells (18–20). Isoforms that were
acutely inhibited by opioids (I, V, VI, and VIII) were
upregulated or supersensitized by chronic treatment. Ad-
enylyl cyclase I and V are expressed at high levels in the
CNS, thus encouraging speculation of a similar upregula-
tion in vivo (see below). The results of this series of
experiments were similar in ways to the early experi-
ments in NG108–15 cells with native opioid receptors and
adenylyl cyclase. The upregulation varied between two-
and fivefold, required 6–10 h of treatment, recovered
within 2–3 h, and was sensitive to pertussis toxin and
agents that scavenged free Gb/g subunits. There were two
significant differences. First the kinetics of the upregula-
tion were faster in the CHO and COS-7 cells than the
NG108–15 cells. This may have resulted from different
expression levels of receptor and/or adenylyl cyclase. The
recovery after morphine treatment in the NG108–15 cells
was complete after 24 h (426). The second potentially
more significant difference was that the supersensitiza-
tion in CHO cells was insensitive to cycloheximide and to
a dominant negative ras mutant that blocked the activa-
tion of MAPK (18, 19). In NG108–15 cells, however, a
large portion of the increased adenylyl cyclase activity
was blocked by cycloheximide (426). The interpretation
of these two observations is completely different. The
result in CHO cells indicates that activity of adenylyl
cyclase is increased, by an as yet uncharacterized mech-
anism, whereas the work in NG108–15 cells suggests that
the upregulation is dependent on new protein, which may
be but is not necessarily adenylyl cyclase itself. It is
important to revisit the NG108–15 cell model, particularly
the effects that inhibition of the MAPK pathway may have
on the upregulation of adenylyl cyclase.

Studies examining the effects of chronic morphine
on adenylyl cyclase in the brain and peripheral tissues
have produced mixed results (71, 125, 479, 497). Acutely,
opioids produced only a small inhibition in most areas
(125, 479, 497) and increased activity in some areas (72,
105, 362). The upregulation of adenylyl cyclase activity
induced by chronic morphine treatment, where it has
been observed, was generally ,0.5-fold. Preparation of
brain and peripheral tissues has problems of heteroge-
neous cell types, multiple receptors, and adenylyl cyclase
isoforms. Expression levels of each component can also
reduce the signal-to-noise ratio and thus cloud interpre-
tation of effects. Such difficulties are inherent in biochem-
ical assays from complex tissues. Despite the fact that the
upregulation of adenylyl cyclase in cell lines and expres-
sion systems is a robust and reliable measure, a similar
approach measuring the bulk production of cAMP in tis-
sues from animals treated with morphine has not brought
new insights to this adaptive mechanism. That is not to
say that it does not happen and is not important. In fact,
there is building evidence that it may be critically impor-
tant in the local area surrounding specific synapses. There
may be additional adaptations resulting from the in-
creased adenylyl cyclase activity mediated by changes in
gene expression under the regulation of CREB (346).

2. Counteradaptations on potassium and

calcium channels

One disappointing and recurring observation has
been the lack of any change in the regulation of potassium
or calcium conductances during acute morphine with-
drawal. Probably the most thoroughly studied example of
the lack of an adaptive process in response to chronic
treatment is the potassium conductance in the LC. Agha-
janian (6) was the first to record the firing rate of LC
neurons in vivo from chronically morphine-treated rats.
Morphine applied systemically caused an acute inhibition
of firing. After 5 days of continuous morphine treatment,
the spontaneous firing had returned to control values,
indicating that LC neurons were tolerant to the levels of
circulating morphine. An increase in firing rate above
control levels upon application of naloxone by ionto-
phoresis was taken as a cellular sign of withdrawal. More
recent experiments in brain slices showed that opioids
acutely activated an inwardly rectifying potassium con-
ductance that caused a hyperpolarization to decrease the
firing rate (374, 523). In addition, LC cells have a resting
potassium conductance that is inwardly rectifying, sug-
gesting that during withdrawal a reduction of this conduc-
tance could depolarize the cell and increase excitability
(523). A decrease in inwardly rectifying potassium con-
ductance in these and other cells by other G protein-
linked receptors has been demonstrated, suggesting that
opioid withdrawal could increase excitability by this
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mechanism (343, 500). When experiments were done with
slices taken from morphine-treated animals, there was no
evidence of a depression in the resting inwardly rectifying
potassium conductance by naloxone (89). Subsequent ex-
periments have indicated that the increase in firing ob-
served in vivo was largely the result of an increase in
glutamate release from the excitatory inputs to the LC (8).

Calcium currents have not been extensively charac-
terized during withdrawal. Although biochemical studies
suggest an increased calcium channel density after
chronic morphine treatment, these results have not been
confirmed in electrophysiological studies in isolated neu-
rons. There was no change in the calcium channel current
density or relative proportions of pharmacologically iso-
lated calcium channel subtypes in acutely isolated LC
neurons taken from morphine-treated animals (97). There
was a modest reduction in efficacy of coupling between
m-opioid receptors and inhibition of calcium channel cur-
rents, but no rebound during naloxone precipitated with-
drawal. Thus withdrawal from morphine treatment pro-
duced no compensatory action on either potassium or
calcium conductances in LC neurons.

3. Cation channel

The acute inhibition of a cation conductance by opi-
oids has been reported in several preparations (Table 1).
In addition, an increase in a cation conductance has been
reported to account for the withdrawal-induced increase
in excitability in the PAG (84; E. E. Bagley and M. J.
Christie, unpublished data) and proposed but not directly
demonstrated in LC (10, 257), and indirectly implicated on
GABAergic neurons in the vicinity of the dorsal raphe
(227). This cation conductance is thought to be regulated
by the cAMP cascade and is more pronounced during
acute withdrawal.

In morphine-dependent rats, naloxone cause a pro-
nounced depolarization in a subset of neurons in the PAG
(84; Bagley and Christie, unpublished data). This depolar-
ization was not simply the reversal of the hyperpolariza-
tion induced by morphine because it was associated with
an increase in conductance. A reversal of the acute action
of morphine would decrease the opioid-sensitive potas-
sium conductance only. The underlying current has been
more fully characterized using perforated patch record-
ings from PAG neurons in brain slices from mouse (84).
The reversal potential of this current was near 230 mV
and was not mediated by a chloride conductance, sug-
gesting that it is mediated by a nonselective cation con-
ductance. It was sensitive to inhibitors of PKA, was mim-
icked by forskolin, and was kinetically distinct from Ih.
Thus it appears that unlike opioid actions on Ih that are
dependent on cAMP but not PKA, this current is kinase
dependent.

The activation of an inward current has been pro-

posed but not established in LC during acute withdrawal.
In a series of papers (reviewed in Ref. 347), Aghajanian
and co-workers (9, 10, 257) showed that cAMP analogs
caused a small glutamate-independent increase in the
firing rate of LC neurons. The increase in activity was
blocked by PKI (a blocker of PKA), as was the spontane-
ous activity. It was concluded that a cAMP-dependent
mechanism regulated an inward current that was respon-
sible for spontaneous firing of LC neurons, and this cur-
rent was increased during acute opioid withdrawal. It has
not been possible to study this current in isolation (10).

The LC has been used as a model system at the
single-cell level for both the acute and chronic opioid
actions. Recent experiments have indicated, however,
that the electrotonic coupling between neurons as well as
glia within the LC limit the interpretation of results ob-
tained with voltage-clamp studies (12, 208, 359, 485). The
effects of electrotonic coupling were dependent on the
experimental circumstances (364). For example, the out-
ward current caused by opioids in the LC was significantly
increased by forskolin (364). The increase in the opioid
current was reduced or abolished with manipulations that
decreased electrotonic coupling (364, 485, 486). This re-
sult was taken to indicate that forskolin, through the
activation of adenylyl cyclase, increased electrotonic cou-
pling within the LC, thus adding an unexpected layer of
complexity to experiments done with morphine-treated
animals.

4. Adenylyl cyclase and synaptic transmission

Activation of the cAMP cascade facilitates synaptic
transmission by both presynaptic (42, 47, 63, 77–79, 86,
165, 203, 402, 409) and postsynaptic mechanisms (388,
505). Increased release by this mechanism has been ac-
complished with the use of agonists that activate Gs-
coupled receptors, forskolin, and/or cAMP analogs. In
most cases the increase in cAMP production results in the
activation of PKA that results in the facilitation of trans-
mitter release. The dependence on PKA is generally de-
termined with enzyme inhibitors, such as staurosporine,
H-89, or blocking analogs of cAMP, such as the Rp-isomer
of adenosine 39,59-cyclic monophosphorothioate (Rp-
cAMPS).

Several studies have used recordings of synaptic po-
tentials to examine the cAMP-dependent regulation of
transmitter release in control and morphine-withdrawn
tissues. The results of these studies indicate that during
acute withdrawal, transmitter release from many, but not
all, opioid-sensitive synapses is increased through a
cAMP-dependent mechanism (Fig. 7). Although the exper-
imental protocols varied somewhat, there were common
features found during acute morphine withdrawal at four
GABA-mediated synapses. First, both basal (spontane-
ous) and evoked release was greater in acutely withdrawn
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slices, and this increase was blocked with inhibitors of
PKA (42). Second, the increased GABA release caused by
forskolin was significantly greater in withdrawn tissues
(42, 86). Finally, in withdrawn tissues under conditions
where there was significant cAMP-induced release, either
with and in some cases without forskolin, the inhibition of
GABA release mediated by opioid receptors was signifi-
cantly increased (86, 203, 430). The interpretation of this
observation centered on the emergence of a new effector.
In withdrawn tissues, opioids caused inhibition by a
cAMP-dependent mechanism that was induced by chronic
morphine treatment.

The increase in cAMP-dependent transmitter release
and the ability of opioids to inhibit this increase was not
unexpected based on the work done on the upregulation
of opioid-sensitive adenylyl cyclase isoforms in cell lines.
Some of these results were obtained in tissues where
adenylyl cyclase activity was reported to be unaffected by
chronic morphine treatment [VTA, PAG, dorsal raphe
(DR)]. Not all opioid-sensitive synapses were affected by
this mechanism. Similar experiments in both the PAG and
VTA showed that the regulation of glutamate-mediated
synaptic transmission was not affected by a cAMP-depen-

dent mechanism in withdrawn tissues (203, 311). Interest-
ingly, in the shell of the nucleus acumbens, GABA syn-
apses to cholinergic interneurons showed an increase in
cAMP-dependent neurotransmitter release by GABA syn-
apses onto medium spiny projection neurons were unaf-
fected by chronic morphine treatment (86; J. M. Brundege
and J. T. Williams, unpublished data). It thus appears that
changes in adenylyl cyclase activity can differentially af-
fect different synapses even on the same cell. Given the
highly localized distribution of adenylyl cyclase at syn-
apses, a high degree of synaptic specificity resulting from
morphine-induced adaptive processes seems plausible.

5. Adenosine

Early behavioral experiments suggested increased
cAMP-mediated signs of withdrawal (93–95). The effect of
cAMP was called the “quasi-morphine-abstinence syn-
drome.” This behavioral response consisted of a series of
behavioral signs and symptoms that were in many ways
similar to those observed during acute morphine with-
drawal. The cAMP-dependent component of the quasi-
morphine-abstinence syndrome was based on increasing

FIG. 7. The regulation of transmitter release from terminals is changed after chronic opioid treatment. Left: when
applied acutely, opioids inhibit transmitter release by several potential mechanisms. These mechanisms include the
activation of potassium conductance, inhibition of calcium conductance, or an inhibition of the release process that has
not been well characterized. It is also known that opioids inhibit adenylyl cyclase; however, this mechanism does not
appear to play a role in the acute inhibition of transmitter release by opioids. Right: after withdrawal from chronic
treatment with morphine, the inhibition of transmitter release by opioids is changed in several ways. 1) Opioids no longer
activate voltage-dependent potassium currents to inhibit release. 2) There is an upregulation of adenylyl cyclase that
increases transmitter release by activation of PKA. 3) The upregulated adenylyl cyclase is sensitive to inhibition by
opioids and represents a new, morphine-induced effector. 4) The increased adenylyl cyclase activity increases the
production of cAMP that is metabolized to adenosine such that adenosine tone and thus presynaptic inhibition mediated
by A1 adenosine receptors is enhanced at some synapses.

316 WILLIAMS, CHRISTIE, AND MANZONI Volume 81



its concentration by blocking its metabolism with the
phosphodiesterase inhibitor IBMX. It is now known that
IBMX is also a potent antagonist of adenosine receptors.
Recent work with selective adenosine receptor antago-
nists indicate that these compounds alone exacerbate the
signs and symptoms of opioid withdrawal (122, 240, 408).
This recent work suggests that the quasi-morphine-absti-
nence syndrome may result from block of adenosine re-
ceptors but does not rule out an additional component
mediated by cAMP. In fact, increased levels of adenosine,
resulting from metabolism of cAMP, may be one conse-
quence of the upregulation of adenylyl cyclase (41, 86,
430).

The activation of adenylyl cyclase, by either Gs-cou-
pled receptors, such as D1 or b-adrenergic receptors, or
with forskolin, increases the extracellular concentration
of cAMP (459). Once in the extracellular space, cAMP is
metabolized by phosphodiesterases to AMP and is rapidly
converted to adenosine by ecto-nucleotidases (107, 127).
Presynaptic A1 adenosine receptors that inhibit transmit-
ter release have been identified at many central synapses
(53, 128). Under normal conditions, the extracellular con-
centration of adenosine is ;200 nM, which is just above
the threshold for activation of adenosine receptors (126).
The basal level of adenosine can therefore be detected
with the use of an adenosine receptor antagonist as an
increase in the size of the synaptic potential and can, thus,
be used as an assay for adenosine tone (126). Activation
of adenylyl cyclase with forskolin has been shown to
increase adenosine tone measured in this way in the
hippocampus, VTA, and nucleus accumbens (52, 86, 287).
In the VTA, there is a potent presynaptic inhibition of the
GABAB inhibitory postsynaptic potential (IPSP) mea-
sured in dopamine cells that is mediated by A1 adenosine
receptors (532). The increase in the GABAB IPSP caused
by an adenosine antagonist was larger in withdrawn tis-
sues than in controls, indicating an increase in adenosine
tone (41, 430). The increased adenosine was suggested to
result from the metabolism of cAMP based on two exper-
iments. Both blockade of cAMP-dependent phosphodies-
terase and blockade of cAMP transport out of cells with
probenicid increased the IPSP to the same level as the
adenosine receptor antagonist (41). The adenosine antag-
onist had a similar effect on the GABAA inhibitory
postsynaptic current (IPSC) in presumed cholinergic in-
terneurons in the nucleus accumbens from morphine-
treated animals (86).

The increased role of adenosine during withdrawal
was very synapse specific. Glutamate-mediated fast
EPSCs in the VTA were completely unaffected by adeno-
sine antagonists during opioid withdrawal (203, 311). This
form of regulation would be dependent on the presence of
presynaptic A1 receptors, the highly localized metabolism
of cAMP to adenosine, and potentially the activity of the
adenosine reuptake proteins. Synapse specificity could

result from the localized release of cAMP or from local
metabolism of cAMP by resident phosphodiesterases at
individual synapses. Increased adenosine-mediated syn-
aptic inhibition resulting from the metabolism of cAMP
during withdrawal from opioids would constitute a phys-
iological brake. This mechanism could account for the
quasi-morphine-abstinence syndrome mediated by aden-
osine antagonists that was first described by Collier et al.
(95).

6. Other adaptations at opioid-sensitive synapses

Adaptations mediated through the adenylyl cyclase
cascade are not universal at opioid-sensitive synapses.
There are several synapses where the regulation of trans-
mitter release mediated by adenylyl cyclase after chronic
morphine treatment was not affected. Although most of
these synapses were glutamatergic, it does not mean that
this form of adaptation does not occur at excitatory syn-
apses. Glutamate EPSCs in the VTA, PAG, and the core of
the nucleus accumbens were all opioid sensitive, but
neither the sensitivity to opioids nor the increase in glu-
tamate release induced by forskolin was significantly af-
fected by chronic morphine treatment (203, 311;
Brundege and Williams, unpublished data).

Morphine withdrawal did, however, change receptor-
mediated presynaptic regulation of glutamate EPSCs in
the VTA. In the VTA, m-receptors caused a presynaptic
inhibition of glutamate EPSCs measured in dopamine
cells (311). The inhibition was sensitive to both 4-amino-
pyridine (4-AP), a potassium channel blocker, and baica-
lein, a 12-lipoxygenase inhibitor, suggesting that opioids
acted via a transduction pathway involving activation of a
voltage-dependent potassium conductance by lipoxygen-
ase metabolites as has been shown in the PAG (499).
During withdrawal, the inhibition caused by DAMGO was
unchanged, but 4-AP and baicalein were significantly less
effective. The decreased sensitivity to 4-AP was the same
as that found in the PAG, where in control 4-AP com-
pletely blocked opioid inhibition of GABA IPSCs but was
ineffective in withdrawn slices (203). Thus it was con-
cluded that the normal 4-AP-sensitive transduction mech-
anism mediating the inhibition of transmitter release by
opioids was downregulated, or completely eliminated,
and replaced by a different mechanism in withdrawn
slices. The inhibition of GABA release in the PAG in
withdrawn slices was replaced by inhibition through ad-
enylyl cyclase (203). The mechanism responsible for pre-
synaptic inhibition of glutamate release in the VTA during
withdrawal is as yet uncharacterized, but was not through
the inhibition of adenylyl cyclase (311).

Although the sensitivity to opioid agonists was not
changed in VTA in withdrawn slices, the presynaptic in-
hibition of glutamate EPSCs to both GABAB and metabo-
tropic glutamate receptor agonists was increased (311).
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The same increased sensitivity to metabotropic glutamate
agonists has been observed at the excitatory glutamate
synapse on medium spiny cells in the nucleus accumbens
(313). These results suggest that one of the consequences
of withdrawal from chronic morphine is an enhanced
presynaptic inhibition mediated by nonopioid G protein-
linked receptors at opioid-sensitive synapses. The mech-
anism and significance of this observation remain to be
determined. The observation alone suggests that there
has been a fundamental change in regulation of transmit-
ter release at these synapses; that is, in the presence of
what would otherwise be normal activity, the activation
of nonopioid presynaptic receptors results in an exagger-
ated response. These results indicate that the adaptive
responses to chronic morphine treatment can encompass
unexpected and wide-ranging network responses that
may not be directly affected by opioids.

C. Synaptic Plasticity and Chronic Opioids

The physiological mechanisms that mediate compul-
sive self-administration of drugs as well as the adapta-
tions responsible for opioid dependence represent patho-
logical forms of memory. At the cellular and synaptic
level, it is likely that synaptic adaptation induced by drugs
of abuse have common mechanisms with other forms of
activity-dependent plasticity, such as LTP or LTD. This
activity-dependent plasticity may result from the direct
effect of morphine on the excitability or transmitter re-
lease of individual cells. However, the indirect effects of
opioids are also important. For example, although pyra-
midal cells of the hippocampus are not directly affected
by opioids, the disinhibition mediated by the opioid inhi-
bition of GABA interneurons increases pyramidal cell
excitability, which would be expected to facilitate some
forms of LTP. The recent advances in understanding the
molecular mechanisms underlying synaptic plasticity in
the mammalian CNS are directly relevant to gaining an
understanding of the effects of drug self-administration.

Activity-dependent adaptations of synaptic efficacy
are thought to be essential to memory formation and
storage and the development of neural circuits. The first
demonstration that high-frequency electrical stimulation
can induce LTP of synaptic transmission was made at the
glutamatergic synapses between the perforant path fibers
and granule cells of the dentate gyrus of the hippocampus
(36). Since then, similar forms of durable synaptic en-
hancement have been described at the Schaffer collateral
to CA1 pyramidal cell synapses and at the mossy fiber
synapses in the CA3 region of the hippocampus. Distinct
mechanisms mediate the plasticity at these two hip-
pocampal synapses, and examples of each mechanism
have been observed at numerous central synapses. Thus
LTD has been observed both at the mossy fiber synapse

and at the Schaffer collateral-CA1 synapse (303, 305). This
form of plasticity is observed with protocols and by mech-
anisms distinct from those that induce potentiation.

1. cAMP-dependent LTP and LTD

The long-term regulation of transmitter release by the
cAMP cascade has been observed in many organisms
from Drosophila to vertebrates (140) and may well be one
of the most conserved mechanisms that regulate synaptic
efficacy. One site where synaptic plasticity has been
shown to be dependent on cAMP is the glutamate synapse
between the axons of granule cells from the dentate gyrus
(mossy fibers) and the dendrites of the pyramidal cells of
the CA3 region. High-frequency stimulation of the mossy
fibers causes a long-lasting increase in the size of the
EPSCs measured in the CA3 pyramidal cells. This LTP is
thought by most to be independent of postsynaptic activ-
ity. Blocking postsynaptic DL-a-amino-3-hydroxy-5-meth-
ylisoxazole-propionic acid (AMPA) or NMDA receptors,
chelation of postsynaptic calcium and hyperpolarization
of the postsynaptic neurons were without effect on the
induction of LTP at this synapse (545). Experiments ex-
amining the frequency of synaptic failures and reduced
paired-pulse facilitation were consistent with a presynap-
tic mechanism for the maintenance of LTP (534, 545).
Finally, results using the progressive block of NMDA
EPSCs with the open-channel blocker MK801 indicated
that the release probability of glutamate was increased
after the induction of LTP (512).

The presynaptic signaling pathways responsible for
LTP at the mossy fiber synapse are thought to be initiated
by an increase in terminal calcium. Buffering extracellular
calcium to a low concentration blocked the induction of
LTP (69). The rise in terminal calcium is thought to acti-
vate a calcium-sensitive isoform of adenylyl cyclase (101).
Forskolin and agents that directly activated PKA caused a
long-lasting potentiation of synaptic transmission and oc-
cluded further induction of LTP. Inhibitors of PKA re-
duced LTP (196, 197, 511). It was therefore concluded that
LTP at the mossy fiber synapse required presynaptic ac-
tivation of a calcium/calmodulin-dependent isoform of
adenylyl cyclase. Recent experiments in mice where the
gene coding for AC1 and AC8 were disrupted showed a
complete blockade of LTP, confirming earlier interpreta-
tions (531).

Synaptic plasticity mediated by a cAMP-dependent
pathway has also been described at the parallel fiber
synapse onto Purkinje cells in the cerebellum (78, 409)
and in the amygdala (195). Thus the cAMP cascade ap-
pears to be a common mechanism that regulates the
strength of synaptic transmission

In addition to the cAMP-dependent LTP, mossy fiber
synapses also display a presynaptic form of LTD. A pro-
longed low-frequency stimulation protocol is generally
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most effective (15 min at 1 Hz). An important component
of LTD is the dependence on the activation of presynaptic
metabotropic glutamate receptors (mGluRs) that are neg-
atively coupled to adenylyl cyclase (254, 491, 538). The
inhibition of adenylyl cyclase was thought to decrease
PKA activity and reduce the cAMP-dependent component
of glutamate release. Thus synaptic strength at the mossy
fiber synapse onto CA3 pyramidal cells can be increased
and decreased by cAMP-dependent mechanisms.

2. Opioids and cAMP-dependent LTP and LTD

Interactions between chronic morphine treatment
and synaptic plasticity at the mossy fiber synapse in the
CA3 region of hippocampus are of particular interest
because 1) opioid receptors inhibit glutamate release at
this synapse (436, 513), 2) the cAMP cascade plays a
central role in plasticity at this site (197, 511), and 3) there
has been considerable effort directed toward the molec-
ular mechanisms that mediate LTP at this synapse.

Considering the role of adenylyl cyclase in LTP and
LTD at the mossy fiber-CA3 synapse in the hippocampus
and the fact that AC1/8 are both upregulated by chronic
morphine, it is possible that this is one site where the
long-term effect of opiates will affect plasticity. Biochem-
ical analysis of adenylyl cyclase activity has failed to
observe a significant change in this area (479); however,
detection of a selective change in the mossy fiber termi-
nals may be limited in this heterogeneous structure.
Chronic morphine treatment did, however, result in a
decrease in prodynorphin mRNA and peptide levels of
dynorphin-(1O13) in the hippocampus, the striatum, and
the hypothalamus (390, 400). This is a sensitive assay in
the hippocampus because it is a measure of a peptide that
is expressed and released selectively from mossy fibers
(334).

In slices from control guinea pigs, stimulation of the
mossy fibers is known to release dynorphin that acts to
inhibit further glutamate release (504, 513). The corelease
of dynorphin under some conditions is capable of limiting
the initiation (513) or the extent of LTP (J. M. Harrison, R.
Allen, J. T. Williams, and O. J. Manzoni, unpublished
data). Naloxone, norbinaltorphimine (nor-BNI), and H-D-
Phe-c[Cys-Tyr-D-Trp-Arg-Thr-Pen]-Thr-NH2 (CTAP) all re-
sulted in an increase in the amplitude of LTP, suggesting
that the release of endogenous opioids, probably dynor-
phin, activated both m- and k-opioid receptors on the
mossy fiber terminals (Harrison et al., unpublished data).

3. Chronic morphine and cAMP-dependent LTP

and LTD

In acutely withdrawn slices from morphine-treated
guinea pigs, LTP at the mossy fiber synapse was en-
hanced, but the inhibition caused by DAMGO and U69593
were unchanged (Harrison et al., unpublished data).

Whereas opioid antagonists increased the amplitude of
LTP in control slices, there was no effect in withdrawn
slices. One potential mechanism that would explain the
enhancement of cAMP-dependent LTP at mossy fiber syn-
apses and the lack of an augmentation by opioid antago-
nists is a reduction in dynorphin release during with-
drawal. In fact, there are reports that indicate that the
content of dynorphin in hippocampus was reduced in
animals treated chronically with morphine (390, 400).
Somewhat surprisingly there was no upregulation of ad-
enylyl cyclase in withdrawn slices. The prolonged cAMP-
dependent inhibition caused by activation of group 2
mGluR receptors with LCCC1 (491) and the effect of
forskolin were not changed by morphine treatment. Thus
a change in the role of adenylyl cyclase on the regulation
of synaptic plasticity at this synapse after chronic mor-
phine treatment was not apparent, confirming biochemi-
cal measurements (479).

A cAMP-dependent increase in transmitter release
during withdrawal has been described in several areas
(42, 86, 203, 430). The effects of this upregulation on LTP
or LTD have not been investigated, and the interaction
between the actions of opioids and activity-dependent
plasticity could be critical in areas such as the amygdala
and nucleus accumbens. Both these areas have been
shown to be important in context-dependent learning
(201, 325, 396, 515), have opioid-sensitive synaptic input
(see below), and are sites where LTP and LTD have been
observed (195, 259). The coincidence of an upregulation
of adenylyl cyclase and context-dependent activity at spe-
cific synapses in these areas may be a potent activator of
long-term synaptic plasticity associated with morphine
treatment.

4. NMDA-dependent LTP and LTD

The most widely studied form of synaptic plasticity is
NMDA-dependent LTP. It is the subject of many extensive
reviews, and anything but a brief description is outside
the scope of this review. It is, however, critical to con-
sider the mechanisms that mediate this form of synaptic
plasticity when trying to understand tolerance to mor-
phine, particularly associative tolerance. Most of what is
known about the mechanisms underlying NMDA-depen-
dent LTP and LTD is based on the glutamate synapse
between the axons from CA3 pyramidal cells (Schaffer-
collaterals) and CA1 pyramidal cells in the hippocampus.
Although similar observations have been made in a vari-
ety of excitatory central synapses in areas such as the
perforant path-dentate gyrus in the hippocampus (253,
348, 535), visual (253) and neocortex (489), thalamocor-
tical synapses (206) as well as synapses in the VTA (40)
and nucleus accumbens (259), none of these sites has
been as well characterized as in CA1 cells of the hip-
pocampus.
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Fast excitatory glutamate transmission is principally
mediated by AMPA subtype receptors that are activated at
the resting membrane potential. At most mature excita-
tory synapses, AMPA receptors coexist with NMDA re-
ceptors that are normally blocked by magnesium at the
resting membrane potential. To be activated, NMDA re-
ceptors require both glutamate binding and membrane
depolarization. LTP is induced by high-frequency stimu-
lation of the Schaffer collaterals (typically, 3 times 1 s at
100-Hz tetanus). The repetitive stimulation results in
postsynaptic summation of AMPA-EPSCs depolarizing
the dendritic spine to relieve the voltage-dependent block
of NMDA channels by magnesium. Calcium entry through
the activated NMDA channel increases the intracellular
level of calcium. This postsynaptic rise in calcium is
thought to activate a variety of calcium-dependent en-
zymes and is an absolute requirement for LTP induction.
Pharmacological and knock-out techniques (433, 434)
have shown that activation of calcium/calmodulin kinase
is required for LTP. Strains of mice with disrupted genes
for Fyn, PKC-g, or a-calmodulin kinase II have also con-
firmed the importance of these kinases in CA1-LTP. The
phosphorylated (activated) form of calmodulin kinase II
can modulate postsynaptic neurons in at least two ways
(282): 1) it can phosphorylate AMPA receptors and aug-
ment their conductance (25, 31), and 2) it could modulate
the slow afterhyperpolarization and increase neuronal
excitability (340). It should be noted that a long-lasting
decrease in the afterhyperpolarization induced by a pro-
tocol that induces LTP has not been generally observed.

In contrast to the consensus about the mechanisms
of induction, there is some controversy about the site of
expression of LTP (presynaptic vs. postsynaptic). Presyn-
aptic modifications of transmitter release might be in-
volved, but there is mounting evidence pointing to a pre-
dominant postsynaptic mechanism (reviewed in Refs.
270, 304, 352). One recent hypothesis is that LTP is caused
by the recruitment of AMPA receptors at synapses that
originally express only NMDA receptors. These NMDA-
only synapses have been termed “silent synapses” (207,
280). This major structural/functional change has recently
been supported by experiments showing the increased
expression of AMPA receptors during postnatal develop-
ment in hippocampus and visual cortex (281, 376, 405)
and after LTP-inducing stimuli in the hippocampus (297,
429).

Two types of LTD have been found on the Schaffer
collateral synapse on CA1 pyramidal neurons. One is
dependent on NMDA receptors, while the other depends
on mGluRs (361). NMDA-dependent LTD is induced by
prolonged low-frequency stimulation of the afferent fibers
(typically 1 Hz for 15 min). Summarized briefly, a small
postsynaptic increase in intracellular calcium is thought
to activate a phosphatase cascade involving calcineurin
and protein phosphatase 1 (106). Functionally this form of

LTD reverses NMDA-dependent LTP mediated by cal-
cium/calmodulin kinase. Thus it appears that there is a
balance between kinase and phosphatase activity that can
be regulated by internal calcium. A second form of LTD
has been described that is dependent on activation of
mGluR5 receptors and calcium entry and depends on the
activation of PKC. This form of LTD is distinct in that it
appears to be phosphatase independent (361).

5. Opioids and NMDA-dependent synaptic plasticity

Morris and Johnston (334) proposed that the effect of
opioids on plasticity in one pathway in the hippocampus
could affect downstream circuitry (334). Thus the effect
of opioids could regulate two or more synapses in series
by a domino effect. This concept has been examined at
the glutamate synapses between perforant path fibers and
granule cells of the dentate gyrus where opioids act by
disinhibition to facilitate excitatory transmission (348,
535). In fact, m-receptor antagonists were found to block
LTP at the synapses of the lateral perforant path, suggest-
ing that endogenous opioids were released by the stimu-
lus protocol (334, 535). By altering excitatory input to the
dentate granule cells, opioids affect the mossy fiber input
to CA3 pyramidal cells and therefore the Schaffer collat-
eral input to CA1 pyramidal cells. Thus the output of the
hippocampus into areas such as the nucleus accumbens
can be regulated by a very indirect mechanism.

There are several examples of synaptic plasticity that
are similar in mechanism to the extensive studies done in
the hippocampus. Such examples include regions that are
critically important in the long-term actions of drugs of
abuse such as the nucleus accumbens (259, 372), the VTA
(40), and amygdala (75, 91, 195). The knowledge acquired
on synaptic plasticity in the hippocampus will be useful to
address the effects of chronic drug use on synaptic phys-
iology. For example, it has recently been shown in both
nucleus accumbens and VTA that mGluR-mediated pre-
synaptic inhibition of EPSCs was enhanced after chronic
morphine treatment (311, 313). These observations are
particularly interesting in light of the role of mGluRs in
LTD that has been established at the mossy fiber (254,
491, 538) and Schaffer collateral synapses (361).

Brain structures responsible for adaptations in re-
sponse to chronic opioids may exhibit forms of synaptic
plasticity that are remarkably similar to those observed in
the hippocampus. In fact, the list of “molecules implicated
in hippocampal LTP” presented by Sanes and Lichtman
(411) includes an impressive number that are known tar-
gets of chronic opioids. Thus it appears that synaptic
plasticity initiated by opioids and activity-dependent pro-
cesses may be linked by common mechanisms. The sys-
tematic study of the effects of chronic drug treatment on
LTP and LTD-like phenomena in structures relevant to
drug addiction will be crucial to the understanding of the
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synaptic consequences of chronic drug use. Assuming
that LTP and LTD are potentially important in mecha-
nisms of learning and memory, morphine may have far-
reaching actions affecting synaptic plasticity by both di-
rect and indirect mechanisms. This may be particularly
important in areas thought to be involved in associative
tolerance such as the amygdala (325).

IV. NEURONAL SYSTEMS INVOLVED

IN ADDICTION

Early models of opioid dependence focused on coun-
teradaptations to the euphoric, or positively reinforcing,
aspects of opioid use. Cessation of chronic opioid use is
associated with an intensely dysphoric withdrawal syn-
drome, or a negative drive to reinstate drug use. This was
once thought to be sufficient to explain the persistence of
opioid addiction (e.g., Ref. 93). As discussed below, there
is now some understanding of the core neural adaptations
responsible for the opioid withdrawal syndrome. There is
no doubt that they play an important role in maintaining
episodes of opioid abuse, for example, rates of relapse to
opioid use during unassisted detoxification (i.e., acute
withdrawal) are generally greater than 80% (see Ref. 316)
presumably due to the intensely dysphoric withdrawal
syndrome. However, it has also become clear that opioid
addiction cannot be explained solely on this basis (e.g.,
Ref. 260). Long-term adaptations in neural systems re-
sponsible for positive aspects of addiction, such as crav-
ing, are now thought to play an important role in the
chronic relapsing-remitting nature of the disorder.

A. Systems Involved in Negative Aspects

of Opioid Addiction

Negative aspects of the opioid withdrawal syndrome
include those referred to as somatic or vegetative signs
and aversive signs. In rats and mice, the former include
jumping, burrowing, wet-shakes, hyperreactivity, vocal-
ization, teeth chatter, piloerection, ptosis, lacrimation,
rhinorhea, diarrhea, penile erection, and ejaculation (e.g.,
Ref. 276). Experimental models of the aversive nature of
opioid withdrawal involve tests of conditioned place aver-
sion (e.g., Ref. 60). Efforts to identify neural systems
involved in expression of the opioid withdrawal syn-
drome have used microinjections of opioid antagonists to
find anatomical loci mediating somatic signs of with-
drawal. These have often been complemented with lesion
studies and biochemical markers of changed neural activ-
ity. Unfortunately, both methods are potentially flawed.
False-positive results occur in microinjection studies be-
cause relatively large doses and volumes of drugs are
injected into brain regions so that spread to neighboring
regions or the ventricular system cannot be ruled out.

Although spread (but not specificity) of microinjections
can be controlled for by examining effects on loci around
the region of interest, this is rarely done systematically in
practice. Similarly, false positives occur in lesion studies
(but less so with excitotoxic lesions) because of uncon-
trolled damage to surrounding structures and fibers of
passage. False negatives can readily occur because the
dose, extent, or sphere of influence of manipulations (in-
jections or lesions) may not fully encompass the relevant
neural populations. This is particularly true for anatomi-
cally complex or highly nonspherical structures.

Early microinjection studies implicated neurons ac-
cessible from the fourth ventricle, particularly the mid-
brain (PAG) and pontine central gray (including the LC)
to mediate most of the somatic signs of opioid withdrawal
(276, 508–510). More recent work (see sect. IVA2) has
substantiated this general localization, but there has been
some controversy concerning specific groups of neurons
involved in the initiation and expression of withdrawal
behavior (Fig. 8; Ref. 90).

1. Noradrenergic systems

The ability of drugs that reduce the activity of nor-
adrenergic neurons, particularly a2-adrenoceptor agonists
such as clonidine, to inhibit withdrawal focused attention
on the role of the noradrenergic nucleus LC in expression
of somatic and aversive signs of withdrawal (159; re-
viewed in Refs. 298, 346; for a contrary view, see Ref. 90).
Following Aghajanian (7), many studies confirmed that
LC action potential activity is profoundly increased in
vivo during opioid withdrawal (but not in vitro, reviewed
in Ref. 90), and an extensive CNS survey of signs precip-
itated by microinjection of the opioid antagonist methyl-
naloxonium found the LC to mediate expression of more
somatic signs of withdrawal at lower doses than in other
brain regions (301). Although electrolytic lesion studies
seemed to confirm these observations (299), 6-hydroxy-
dopamine lesions of the dorsal noradrenergic bundle (16,
48, 112), which conveys the noradrenergic projections
from the LC to the midbrain and forebrain, and complete
6-hydroxydopamine lesion of the LC itself (60) had no
effect at all on the somatic or aversive aspects of opioid
withdrawal. The latter observations unequivocally ruled
out a role for the LC in expression of somatic and aversive
signs of opioid withdrawal. Profound activation of LC
neurons during withdrawal is, therefore, an epiphenome-
non, and withdrawal signs evoked by microinjections of
opioid antagonists in the vicinity of the LC are presumably
affecting nearby brain regions such as the PAG and pon-
tine tegmental regions such as Barrington’s nucleus (see
sect. IVA2).

Other evidence has implicated noradrenergic neu-
rons arising from medullary sites, including the nucleus
tractus solitarius and the ventral medullary A1 noradren-
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ergic group. These neurons innervate the forebrain via the
ventral noradrenergic bundle, and there is particular in-
terest in the bed nucleus of the stria terminalis, which was
shown to mediate the aversive but not somatic compo-
nents of opioid withdrawal (16, 112). Noradrenergic in-
nervation of supraoptic and paraventricular magnocellu-
lar hypothalamic neurons may also modulate endocrine
disturbances that occur during opioid withdrawal (51).
The effects of a2-adrenergic drugs on opioid withdrawal
may involve these projections and/or various other brain
regions that express both opioid and a2-adrenoceptors.
Indeed, a2-adrenoceptor agonists overcome sympathetic
nervous system-mediated signs of opioid withdrawal
when injected intrathecally (56) and the excitation of
neurons in the PAG during opioid withdrawal (84, 203).

2. Descending systems involved in opioid withdrawal

Microinjection studies (44, 276, 301, 508–510) have
also strongly implicated the midbrain PAG in expression
of somatic signs of opioid withdrawal. Electrical or chem-
ical stimulation of the PAG modulates responses to nox-
ious stimuli in drug-naı̈ve animals and evokes somatic and
autonomic responses associated with defensive behaviors
that bear some resemblance to opioid withdrawal (23,
283). Major projections arising from the PAG innervate
ventral and dorsal medullary regions that are also impli-
cated in expression of opioid withdrawal (see below).

In vitro, opioids acting on m-receptors in PAG in-
crease potassium conductance (82, 365), inhibit voltage-

gated calcium channel currents (98), and presynaptically
inhibit both glutamate- and GABA-mediated neurotrans-
mission (83, 498, 499). Although excitatory neurotrans-
mission is inhibited, the dominant acute effect of opioids
is thought to be disinhibition of descending projections to
medullary sites including the nucleus raphe magnus, nu-
cleus paragigantocellularis, and the nucleus tractus soli-
tarius via direct inhibition of GABAergic neurons and
GABA neurotransmission (26).

In vitro electrophysiological studies (84, 203) have also
established that opioid-sensitive neurons and GABAergic
synapses in PAG display rebound hyperactivity during opi-
oid withdrawal that is consistent with expression of opioid
withdrawal. As discussed above, a cAMP-modulated cation
conductance contributes to hyperexcitability of PAG cell
bodies, some of which are GABAergic (236), during opioid
withdrawal (84; Bagley and Christie, unpublished data). In
addition, a switch from presynaptic modulation of GABA
transmission via arachidonic acid metabolites to mediation
via adenylyl cyclase activity is responsible for rebound en-
hancement of GABA synaptic activity in PAG during with-
drawal (203). Microinjection of PKA inhibitors into PAG
attenuated withdrawal signs (302, 385), suggesting that these
adaptations observed in vitro contribute to the expression of
withdrawal. Other forebrain and midbrain regions impli-
cated in opioid withdrawal, for example, the nucleus accum-
bens and central nucleus of the amygdala (179, 458), also
innervate the PAG and may thereby influence expression of
some signs of opioid withdrawal.

FIG. 8. The anatomical substrate mediating opioid withdrawal. The bed nucleus of the stria terminals (BNST) is a
major target of noradrenergic projections from the ventral noradrenergic bundle (VNAB) that has been clearly demon-
strated to be necessary for expression of aversive behavior associated with opioid withdrawal. The VNAB also influences
other brain areas during withdrawal such as at the paraventricular hypothalamic nucleus (PVN) and preoptic area (PO).
Activation of noradrenergic cells in the A1 region and the nucleus tractus solitarius (NTS) is probably associated with
VNAB activation, since complete neurotoxic ablation of the locus coeruleus (LC) has demonstrated that this group of
neurons is not involved in expression of somatic or aversive signs of opioid withdrawal. The periaqueductal gray (PAG),
a crucial site for initiation and expression of somatic signs of opioid withdrawal, receives major innervation from
forebrain regions [many of which are innervated by BNST, i.e., nucleus accumbens (Nacc), amygdala (Amyg), and PVN].
The PAG innervates medullary sites including the rostral ventromedial medulla (RVM), particularly the nucleus raphe
magnus and the nucleus paragigantocellularis (PGi) and NTS that are probably responsible for the expression of many
of the somatic and autonomic signs of opioid withdrawal via their efferent projections to autonomic and somatic motor
neurons. The PGi in particular provides excitatory input to sympathetic premotor neurons of the intermediolateral
column and is the major source of excitatory drive to the LC during withdrawal. It is not clear yet whether sensory drive
contributes to excitation of these medullary regions during withdrawal.

322 WILLIAMS, CHRISTIE, AND MANZONI Volume 81



It is not yet clear whether or not similar adaptations
develop at other sites in descending systems involved in
autonomic and somatic responses to threatening stimuli.
Indirect indices of withdrawal activation of neurons, e.g.,
c-fos expression, indicate that neurons in the nucleus
paragigantocellularis, nucleus tractus solitarius, and dor-
sal horn of the spinal cord are activated during opioid
withdrawal (395, 460). Increased activity of (presumed)
adrenergic nucleus paragigantocellularis (PGi) neurons
has been reported during opioid withdrawal, but it is not
yet clear whether this also occurs in vitro (24). When
stimulated, the PGi activates both ascending alerting sys-
tems including LC and sympathetic neurons (284), and
direct stimulation of the PGi in behaving animals induces
withdrawal-like behavior (173).

3. Ascending sensory systems in opioid withdrawal

There is no doubt that the LC is strongly activated in
vivo by opioid withdrawal and that this largely arises from
excitatory afferent drive. The major excitatory afferents
to the LC arise from the PGi, which may be activated by
intrinsic counteradaptations of enhanced afferent drive
arising from sensory neurons or ultimately from other
brain regions such as the PAG. There is little evidence
available regarding whether or not afferent neurons or
their central terminations in the superficial dorsal horn
exhibit intrinsic rebound excitation during opioid with-
drawal. In vivo extracellular recordings (220) and indirect
measures of neural activation have suggested that super-
ficial dorsal horn neurons are hyperactive during opioid
withdrawal, but neurochemical lesion studies have sug-
gested that this is dependent on descending noradrener-
gic neurons (395).

It is tempting to speculate that the PAG, PGi, and
NTS form part of a descending (and ascending) network
that plays a core role in the generation and expression of
negative aspects of opioid withdrawal with diverse influ-
ences on somatic, autonomic, and aversive components
of the phenomenon. Other brain regions including the
nucleus accumbens, amygdala, and paraventricular hypo-
thalamus contribute to the aberrant activity of this system
during acute opioid withdrawal.

B. Systems Involved in Positive Aspects

of Opioid Addiction

The mesolimbic system is thought to play a key role
in endogenous reward (45, 528). This system is of obvious
survival value as all species require strong motivation for
items such as food, water, and sex. Many drugs of abuse,
including opioids, are capable of efficiently activating this
system. One of the theories explaining the basis of drug
abuse is dependent on the effects of drugs in this reward
pathway. Both animals and humans will work for drugs,

sacrificing other forms of reward simply because the drug
is more efficient at producing satisfaction. Thus the acute
and chronic actions of abused drugs in the various com-
ponents of this system have been intensely examined. The
best-recognized components of this pathway include the
VTA, nucleus accumbens, ventral pallidum, and prefrontal
cortex.

It appears that the connections between these areas
are critical for many of the adaptive changes induced by
morphine, and other drugs, since no single area can ac-
count for all effects. For example, rats will lever press for
microinjection of m-opioid agonists into the VTA, suggest-
ing that the VTA is involved in the reinforcing properties
of opioids (113). With repeated microinjection of opioids
into the VTA, animals become sensitized to the locomotor
stimulant effects; that is, it takes less morphine to cause
an equal locomotor response (230, 233, 234, 502). Such
sensitization persists for weeks after the termination of
the treatment, indicating that opioid actions in the VTA
can lead to long-term effects. Both the expression of
sensitization (234) and the reinforcing properties of opi-
oids under some conditions (247) are also dependent on
the nucleus accumbens. Thus the reward pathway is de-
pendent on the interaction between the VTA and other
nuclei.

1. VTA

The VTA is a heterogeneous group of cells made up
of dopamine and GABA-containing neurons. Until re-
cently, the dopamine cells were thought to be the output
neurons, and GABA cells were interneurons. The recent
discovery of GABA projection neurons extends the poten-
tial role of the VTA (452, 496). Electrophysiological stud-
ies of the substantia nigra pars compacta and the VTA in
both rats and guinea pigs (162, 224, 272, 273, 543) have
demonstrated neurons that fall into two or three catego-
ries (162, 224, 272, 273, 543). Two groups of neurons are
directly hyperpolarized by opioids. The best characterized
are presumed GABAergic interneurons (225). The second
group of cells is distinct in that they are hyperpolarized by
opioids, 5-hydroxytryptamine (5-HT), and dopamine (62).
The third group is the dopamine cells. Although the mem-
brane potential of dopamine cells was not directly af-
fected by opioids, a substantial portion of dopamine cells
expresses both m- and k-opioid receptor mRNA (10) and
immunoreactive protein (Wessendorf, unpublished obser-
vations). The release of dopamine in the nucleus accum-
bens in vivo and in cultures of midbrain neurons is de-
creased by activation of k-receptors (3, 110, 443, 448, 533).
Thus a functional role of receptors found on dopamine
cell terminals has been established. The function of opi-
oid receptors expressed on the cell body and dendrites of
dopamine cells remains to be elucidated, since no direct
effects on membrane excitability have been observed.
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The most robust response to opioids measured in dopa-
mine cells results from the presynaptic inhibition of
GABA release, which through disinhibition increased the
firing frequency (171, 225).

A) PRESYNAPTIC REGULATION OF GABA RELEASE. Both
GABAA- and GABAB-mediated synaptic potentials in do-
pamine cells of the VTA were inhibited presynaptically by
opioids. The GABAA-mediated synaptic potential is
thought to arise from interneurons that are hyperpolar-
ized by opioids (225). The inhibition of spontaneous ac-
tivity recorded from interneurons correlated with the in-
hibition of tetrodotoxin-sensitive GABA-mediated IPSPs
recorded in dopamine cells (225). It was concluded that
cells that were hyperpolarized by m-opioid receptors in
the VTA were GABA interneurons.

The GABAB IPSP is thought to arise from fibers orig-
inating in the nucleus accumbens or ventral pallidum. On
the basis of selective effects of 5-HT and dopamine on
GABAA and GABAB IPSPs, separate terminals are thought
to mediate these synaptic responses (63, 223). The GABAB

IPSP was increased by D1-dopamine agonists and de-
creased by 5-HT1B agonists, whereas the GABAA IPSP was
insensitive to both agonists. Unlike the inhibition of the
GABAA IPSP, both m- and k-opioid agonists decreased the
GABAB IPSP by a presynaptic mechanism (225, 430). Thus
the activation of opioid receptors on at least two types of
GABA-releasing terminals decrease GABA-mediated inhi-
bition, allowing an increase in activity through disinhibi-
tion (171, 225).

B) PRESYNAPTIC REGULATION OF GLUTAMATE RELEASE. Exci-
tatory synaptic input mediated by glutamate is a key
component of the regulation of dopamine cells. The glu-
tamate afferents arise from three primary sources: the
medial prefrontal cortex, the pedunculopontine region,
and the subthalamic nucleus (133). Glutamate acts on
AMPA, NMDA, and mGluRs to depolarize dopamine neu-
rons (321, 428). In addition, glutamate mediates a slow
IPSP through activation of mGluR receptors (134). Syn-
aptically released glutamate can therefore cause rapid
and slow changes in the activity of dopamine cells. One
role of the glutamate innervation of the VTA is to mediate
a switch from pacemaker-like firing in dopamine cells to
burst-firing pattern (148, 341, 465).

Presynaptic inhibition of glutamate release by m-re-
ceptors caused inhibition of both AMPA- (311) and
mGluR-mediated (134) synaptic responses. Taken to-
gether, the acute effects of opioids reduce both excitatory
and inhibitory afferent inputs onto dopamine cells such
that the firing rate and pattern would be more dependent
on the intrinsic membrane properties that sustain spon-
taneous activity.

C) CHRONIC MORPHINE TREATMENT AND THE REGULATION OF

EXCITABILITY. The activity of dopamine cells recorded in
vivo during acute withdrawal from repeated morphine
was depressed for at least 7 days (118, 116). Although the

basal firing rate returned to control values after 14 days of
withdrawal, the sensitivity to morphine was significantly
increased. Adaptations in synaptic regulation of dopa-
mine cells within the VTA may account at least in part for
these observations. For example, the prolonged inhibition
of dopamine cells could result from the increased proba-
bility of GABA release that has been observed when mea-
suring GABAA IPSCs during withdrawal (42). An in-
creased sensitivity to the presynaptic inhibition of
glutamate release to both GABAB and mGluR agonists
could also reduce the release of glutamate (311). In fact,
a decrease in the burst rate of dopamine cells recorded in
vivo, which is a measure of glutamate release, was the
measure that was affected the most during withdrawal
(116).

A small upregulation of GluR1 AMPA receptor sub-
unit expression in homogenates of VTA was found after
repeated morphine treatments (138). Such an upregula-
tion could be an adaptive response resulting from a tonic
decrease in glutamate release (311). Given the results
indicating that the activity of dopamine cells was reduced
during withdrawal, it may be that the increased expres-
sion of AMPA subunits occurs in interneurons. Physiolog-
ical experiments examining AMPA EPSCs in the VTA,
particularly on interneurons, have not been done in ani-
mals treated chronically with morphine.

The increased sensitivity of dopamine cells to mor-
phine in animals withdrawn for 14 days demonstrates
sensitization at the single-cell level. Although it is not
possible to determine where the increased sensitivity
occurs in this experiment, under some conditions, the
inhibition of the GABAB IPSP caused by DAMGO and
[Met]enkephalin in the VTA was greater in morphine-
withdrawn slices (430). Another lasting effect of with-
drawal from morphine treatment was an increase in pre-
synaptic inhibition of the GABAB IPSP mediated by A1

adenosine receptors (41, 430). The increase in adenosine
tone was determined by examining the effect of an aden-
osine antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX),
on the amplitude of the GABAB IPSP. In slices from
withdrawn animals, the antagonist caused a significantly
larger increase in the GABAB IPSP than in controls. It was
concluded that there was an increase in the level of
endogenous adenosine since the sensitivity of the A1
receptor was not affected by morphine treatment. This
effect was persistent, since it was also found in slices
taken from animals that were withdrawn for more than 7
days (136). The increase in adenosine tone would reduce
inhibition of dopamine cells by GABA released from sites
that mediate the GABAB IPSP. The significance of ade-
nosine-mediated presynaptic inhibition of GABAB IPSPs
on the excitability of dopamine cells is not known.

D) CHRONIC MORPHINE TREATMENT AND POSTSYNAPTIC ADAPTA-
TIONS OF DOPAMINE CELLS. Various neurochemical, morpho-
logical, and physiological changes in slices of VTA result
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from chronic morphine treatment. Some of these changes
have been shown to occur on dopamine cells. For exam-
ple, the amount of immunoreactive tyrosine hydroxylase
(TH) was increased at the same time as a small decrease
in mRNA expression was observed (43). The size of do-
pamine cells also declined by 25% (440). These effects
selectively affected dopamine cells, since the TH expres-
sion in LC was increased and the morphology of TH-
negative cells in the VTA was not affected. It is not known
if these changes result from direct or indirect actions of
opioids on the dopamine cells. Many other changes in the
VTA have been identified based on experiments done with
tissue homogenates or microinjections. These experi-
ments, however, do not distinguish effects on dopamine
cells from other cell types in the area (neurofilament
proteins, Ref. 28; axoplasmic transport, Ref. 29; phospho-
lipase C-g, Ref. 529; G proteins, Ref. 479; ERK, Ref. 33;
glutamate receptor subunits, Refs. 68, 138).

Dopamine release is decreased by the k-opioid ago-
nist U69593, in dissociated cultures from rat midbrain
(110). With prolonged treatment (6 days), tolerance to the
inhibition by U69593 and an increase in release upon
withdrawal was observed (110). Thus continuous expo-
sure of dopamine cells in primary culture results in adap-
tations at both the receptor (tolerance) and the effector.
Upon the induction of withdrawal there was a long-lasting
increase in the amount of spontaneously released dopa-
mine. The early component of the augmented release was
thought to result from accumulation of dopamine in
stores simply as a result of the inhibition of release. The
augmented release seen after longer incubation periods
may represent the induction of processes that facilitate
transmitter release, as has been observed in brain slice
experiments at GABA synapses (42, 86, 203, 430).

It appears that the inhibition of dopamine release
induced by activation of k-receptors is less effective than
the increased excitability of dopamine cells induced by
systemically administered morphine. Acute administra-
tion of morphine increased dopamine release in the ven-
tral striatum measured using microdialysis (3). During
acute withdrawal from chronic morphine treatment, both
basal and morphine-stimulated release were depressed.
The decrease in basal dopamine correlates with the de-
pression of dopamine cell firing during the first week of
withdrawal (116). In addition, during withdrawal, the
morphine-induced increase in dopamine release was de-
pressed in absolute measures, but significantly greater
when expressed as the increase over basal (3). Thus it
was concluded that the sensitivity to morphine increased
after the first 3 days of withdrawal, but returned to con-
trol after 1 wk. The increased sensitivity to morphine is
similar to, although not as long lasting as, that found when
measuring the effect of morphine on the firing rate of
dopamine cells (116).

In summary, the effects of chronic morphine treat-

ment on the activity of dopamine cells are made up of
both pre- and postsynaptic adaptations. Presynaptic ad-
aptations involve cAMP-dependent and -independent
mechanisms that include the regulation of both GABA and
glutamate release. Many of the postsynaptic adaptations
may result from the direct activation of k-opioid receptors
or indirectly from altered afferent input. The primary
result is a long-lasting decrease in dopamine cell activity.
This decreased activity results in part because of an in-
crease in GABA-mediated inhibition and possibly aug-
mented presynaptic inhibition of glutamate release.

2. Nucleus accumbens

The nucleus accumbens is a site of convergence of
many limbic areas and is thought to be critical for both
the acute reinforcing and withdrawal aversive stimulus
properties of opioids (185, 261, 422). Dopamine projec-
tions to the nucleus accumbens have both pre- and
postsynaptic actions (182, 189, 349, 373, 493). Excitatory
glutamate projections from hippocampus, amygdala, sep-
tal nuclei, and prefrontal cortex innervate neurons in the
nucleus accumbens (185, 338). Inhibition mediated by
GABA is intrinsic to the nucleus or arises from projec-
tions from other parts of the basal ganglia (185, 263). The
nucleus accumbens is a complex area having two major
subdivisions and several distinct cell types (185). The
core and shell regions make up the primary subdivisions
(185). The more medial shell region tends to project to
midline regions, for example, the ventromedial aspect of
the ventral pallidum and the VTA. Projections from the
core innervate the dorsolateral ventral pallidum and the
substantia nigra.

Medium spiny cells make up the vast majority of
neurons in the nucleus accumbens. Much of what is as-
sumed about the properties and local connections be-
tween neurons in the nucleus accumbens is based on
experiments done in the dorsal striatum. The conduc-
tance of these cells is dominated by an inwardly rectifying
potassium current (492). This strong inward rectification
is responsible in part for the ability of these cells to have
a membrane potential that has two stable states, one at
very hyperpolarized potentials (280 mV, down state) and
the other near threshold for action potentials (250 mV, up
state). The shift from one state to the other is critical for
the output of the cells and is dependent on excitatory
synaptic input (357, 453, 454, 520, 524). Medium spiny
neurons can be subdivided into two very general groups
based on their receptor expression, peptide neurochem-
istry, and projections (185). A very simplified description
is that cells projecting to the VTA contain substance P,
have D1 receptors, and are more often found in the shell
of the nucleus accumbens (288). Cells having D2 recep-
tors and enkephalin more often project to the ventral
pallidum. Although this description is a starting point, it is
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also a gross simplification because there is probably con-
siderable overlap among these two basic populations sim-
ilar to that described in the striatum (464).

The remaining neurons are made up of several
groups of interneurons. Interneurons play a key role in
the integration of afferent input and regulation of the
output of the striatum and nucleus accumbens (185, 243,
244, 263). Anatomical and physiological data indicate that
the fast-spiking interneurons innervate the GABAergic
medium spiny projection neurons (244, 263, 320). Based
on dual cell recordings from medium spiny and GABA
interneurons in brain slices, a single interneuron was
capable of evoking an IPSP in medium spiny cells that
would delay the activation of action potentials (263). It
was estimated that each medium spiny cell receives in-
nervation from 4–27 interneurons, and each interneuron
innervates 135–540 medium spiny. Thus the activity of a
single interneuron has an important influence on the reg-
ulation of the output neurons in this area. Koos and
Tepper (263) also conducted dual recordings from pairs
of interneurons, which indicated there could be substan-
tial electrotonic coupling between interneurons that
would further extend the local regulation of the medium
spiny cells.

Another potential source of GABA input to medium
spiny neurons is recurrent collateral innervation between
these cells. Although spiny neuron to spiny neuron syn-
aptic connections have been proposed for some time,
physiological experiments have failed to provide any ev-
idence for such connections (210, 263). There is, however,
considerable evidence that medium spiny neuron recur-
rent collaterals synapse onto accumbens interneurons,
suggesting that spiny neurons and interneurons are recip-
rocally connected (38, 39, 244).

A) ACUTE EFFECTS OF MORPHINE. Morphine can have vari-
able effects in the nucleus accumbens when administered
systemically (174, 175). The firing rate of a small propor-
tion of neurons was inhibited, but most cells were unaf-
fected by morphine. This observation was the same in
experiments where animals were trained to self-adminis-
ter heroin, although the percentage of cells that re-
sponded increased when the dose of heroin was in-
creased (278). At least part of the inhibition observed in
these animals may have been mediated through the VTA,
since microinjection of morphine into the VTA had been
previously found to inhibit activity in the nucleus accum-
bens (176). Local application of morphine (iontophoresis)
also inhibited the firing of a percentage of cells, indicating
that both local and long-distance pathways were involved
in the acute actions of morphine in the nucleus accum-
bens (176).

Opioid receptors are present within the nucleus ac-
cumbens postsynaptically (307) and presynaptically on
both glutamate and GABA afferents (163, 466–469). Opi-
oids presynaptically inhibit EPSCs recorded in medium

spiny neurons of the nucleus accumbens (312). This inhi-
bition is thought to be critical since the glutamate input is
required not only to bring the membrane potential into the
relatively excitable “up state,” but also to drive action
potentials. A direct hyperpolarization of a subpopulation
of neurons presumed to be some type of interneuron has
been observed in the striatum (214). Presynaptic inhibi-
tion of GABAA IPSCs has also been observed in the nu-
cleus accumbens, striatum, and globus pallidus (86, 214,
450, 542).

Several acute actions of opioids have been described
in the nucleus accumbens, ventral pallidum, and associ-
ated striatal structures; however, these observations have
not been developed sufficiently to reach any meaningful
conclusions about the overall influence of opioids on
neuronal activity. The complexity of the excitatory affer-
ent input and intrinsic inhibitory innervation as well as
the heterogeneity of cells make it impossible at this time
to reach a consensus on the overall effect of opioids in the
nucleus accumbens. In fact, the same situation exists for
the actions of dopamine in this region. Despite consider-
able effort and multiple experimental approaches, the
mechanisms and overall actions of dopamine in the stri-
atum and nucleus accumbens are contentious and unre-
solved (182, 349, 350). Experiments using selective acti-
vation of excitatory afferents are critical. Given that the
activity of GABA interneurons has a dramatic influence on
the excitability of projection neurons (263), a study of
postsynaptic effects of opioids on these cells is also rel-
evant. Dual cell recording experiments between interneu-
rons and medium spiny neurons could be extended to
examine opioid actions at a defined synapse.

B) WITHDRAWAL FROM CHRONIC MORPHINE TREATMENT. Evi-
dence that the nucleus accumbens plays an important role
in various aspects of withdrawal from morphine is based
on behavioral studies using microinjection of agonists
and antagonists (262, 458). Microinjection of D2 agonists
into nucleus accumbens also reduced several compo-
nents of withdrawal (179). Thus it appears that the with-
drawal-induced decrease of dopamine release in the nu-
cleus accumbens may be an important aspect of acute
withdrawal. Non-dopamine-dependent withdrawal was
also demonstrated in experiments in mice lacking D2

dopamine receptors. These animals did not demonstrate
place preference for morphine, suggesting that morphine
lacked rewarding properties, but did exhibit robust with-
drawal signs (300). Taken together, these studies indicate
an important but not exclusive role for dopamine in the
nucleus accumbens, mediating both the acute and chronic
actions of morphine.

The nucleus accumbens is one of many sites in which
an upregulation of adenylyl cyclase following chronic
morphine treatment has been observed (479). The nu-
cleus accumbens is an area enriched in type V adenylyl
cyclase (156, 329), which is an isoform that was acutely
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inhibited by opioids and upregulated with chronic mor-
phine treatment in cell-culture expression systems (19,
20). Microinjection of two PKA inhibitors, 1-(5-isoquino-
linylsulfonyl)-2-methylpiperazine (H-7) and N-(2-[methyl-
amino]ethyl)-5-isoquinolinesulfonamide (H-8), into the
nucleus accumbens blocked place aversion associated
with morphine withdrawal, suggesting that PKA is acti-
vated as a result of the increased adenylyl cyclase (495).

Adenylyl cyclase was found to play a prominent role
in the regulation of GABA IPSCs in the large cholinergic
interneurons of the nucleus accumbens during with-
drawal from chronic morphine treatment (86). In with-
drawn tissues, an activator of adenylyl cyclase (forskolin), a
D1 dopamine agonist (SKF-82958), and a b-adrenergic ago-
nist (isoproterenol) all caused a significantly greater in-
crease in the GABA IPSC than in control. Thus it was
concluded that an upregulation of adenylyl cyclase during
withdrawal led to augmented GABA release. The opioid
inhibition of GABA IPSPs was unchanged in withdrawn
tissues under basal conditions. However, when release
was augmented by the addition of forskolin, the inhibition
caused by opioids was significantly increased. Taken to-
gether, these observations suggest that the upregulation
of adenylyl cyclase and resulting increase in GABA re-
lease is a cellular correlate to withdrawal. The increased
sensitivity to forskolin was present 1–2 days after the
onset of withdrawal, but declined to control values within
7 days, indicating that it was a relatively acute change.
The increased sensitivity to opioids may be an early sign
of sensitization at the synaptic level; however, the effect
of opioids was not examined at time points beyond the
first hours of withdrawal. The significance of these obser-
vations in the regulation of activity within the nucleus
accumbens is unknown.

These results predict that acetylcholine release
would be increased acutely by opioids through disinhibi-
tion and reduced during withdrawal. However, dialysis
experiments done in vivo indicate that opioids acutely
decreased acetylcholine release (387). The acute inhibi-
tion caused by morphine was absent, and an increase in
acetylcholine release was found following prolonged
withdrawal from morphine (137, 345, 480). Although no
postsynaptic actions of opioids were observed, all exper-
iments were done with whole cell recordings such that
potential postsynaptic actions could be missed due to
technical limitations. In fact, preliminary results using
perforated patch recordings indicate that opioids changed
the spontaneous firing rate of these neurons from a steady
pacemaker pattern to a robust bursting pattern (B. Chieng
and J. T. Williams, unpublished data). The mechanism of
this acute effect and the potential modulation of that
effect induced by chronic morphine treatment remain to
be determined.

Opioids also inhibited both excitatory and inhibitory
synaptic currents in medium spiny projection cells

(Brundege and Williams, unpublished data). In contrast to
the GABA inputs to cholinergic interneurons, the opioid
inhibition of GABA IPSCs to medium spiny neurons was
unchanged after chronic morphine treatment. Further-
more, the ability of forskolin to potentiate GABA release
at these synapses was unaffected by chronic morphine.
Chronic morphine also had no effect on opioid inhibition
after forskolin potentiated glutamate EPSCs in medium
spiny neurons of the core. It thus appears that changes in
synaptic physiology after chronic morphine treatment are
localized to specific synapses within the nucleus accum-
bens and that alterations in the synaptic input to inter-
neurons rather than medium spiny projection neurons
may play a role in mediating the effects of opiate addic-
tion and withdrawal. Further definition of the local cir-
cuitry within the nucleus accumbens is necessary to ap-
preciate the significance of the specificity of this adaptive
response.

Excitatory synaptic inputs to the accumbens were
potently depressed by activation of A1 adenosine and
metabotropic glutamate receptors (309, 310, 313;
Brundege and Williams, unpublished data). Not only was
the level of endogenous adenosine sufficient to cause a
small tonic inhibition of the glutamate EPSC (310;
Brundege and Williams, unpublished data), presynaptic
inhibition caused by D1 dopamine receptor activation has
been reported to be mediated by adenosine (182). Thus
the control of extracellular adenosine can play an impor-
tant role in the excitability of medium spiny neurons. It is
also true, however, that the interaction between adeno-
sine and D1 receptors is a contentious observation (349,
350). When adenosine tone was increased by blocking its
reuptake with NBTI and dipyridamole, the EPSC was
potently inhibited, and this inhibition was reversed with
DPCPX (310). It was therefore suggested that the extra-
cellular adenosine resulted from the metabolism of cAMP.
Under basal conditions, the inhibition of cAMP-dependent
phosphodiesterase with RO-20–1724 increased the EPSP
to the same extent as the adenosine receptor antagonists
and occluded the increase by these antagonists (310). In
addition, RO-20–1724 also significantly reduced the inhi-
bition of the EPSP caused by inhibition of adenosine
reuptake (310).

The role of adenosine during withdrawal in the nu-
cleus accumbens has been examined in medium spiny
cells (Brundege and Williams, unpublished data) and in-
terneurons (86). The only site where adenosine tone was
increased was at the GABA IPSC measured in interneu-
rons (86). In those experiments the adenosine receptor
antagonist DPCPX produced a larger augmentation in the
IPSC in withdrawn slices than in controls. In medium
spiny cells, withdrawal caused the concentration re-
sponse curve for adenosine-mediated inhibition of EPSCs
to shift to the left (Brundege and Williams, unpublished
data). The increased sensitivity appeared to be dependent
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on reuptake mechanisms because the same concentra-
tion-response curve to N6-cyclopentyladenosine, an aden-
osine agonist that is not a substrate for uptake, was not
changed by morphine treatment. Thus the sensitivity to
presynaptic inhibition by adenosine was increased during
withdrawal, perhaps resulting from altered adenosine re-
uptake. This observation, although different in mecha-
nism, is consistent with an increased presynaptic inhibi-
tion found at this same synapse (313) and at the
excitatory glutamate synapse in the VTA that is mediated
by mGluRs (311). The increase in presynaptic inhibition
suggests that multiple events downstream from opioid
receptors can be affected by chronic morphine treatment.
An increased presynaptic inhibition of glutamate release
would presumably decrease the glutamate drive of me-
dium spiny neurons during withdrawal. Although opioids
cause inhibition at this synapse, the amplitude of the
inhibition is small (maximum 30%). The added inhibition
resulting from adenosine and mGluR activation, both of
which can cause potent inhibition (60–90%), may contrib-
ute to mechanisms involved in sensitization to opioids.
The significance of this adaptive mechanism on the over-
all function of the nucleus accumbens remains to be
determined.

In summary, there is no general conclusion on the
changes in function in the nucleus accumbens or associ-
ated basal ganglia resulting from chronic morphine treat-
ment. Although there have been a number of observations
made at selected synapses, these isolated observations
have not been developed sufficiently to allow any predic-
tions about short- or long-term adaptations. Given the
emphasis that this area has received based on behavioral
studies, the cellular, synaptic, and network mechanisms
that account for these results are worthy of continued
effort.

V. CORE ADAPTATIONS COMMON

TO OTHER DRUGS

A. Common Network Actions:

The Mesocorticolimbic System

The direct and indirect pharmacological effects of
drugs acting through the dopamine system have estab-
lished its role in initiating drug abuse as well as craving
and relapse (119, 120, 518). The interactions of drugs of
abuse with the dopamine system has been studied with
dopamine receptor agonists and antagonists, lesions, and
stimulation of dopamine pathways and various dopamine
receptor and transporter knockout animals. Although dif-
ferent drugs of abuse act at distinct receptors and through
separate transduction mechanisms, many promote the
release and/or prolong the duration of action of dopamine
in the mesocortical and/or mesolimbic systems. Drugs

that directly increase the firing rate of dopamine cells
include nicotine (61, 377, 404) and alcohol (49, 50, 322).
Opioids and cannabinoids inhibit GABA release in the
substantia nigra and VTA resulting in an increase in do-
pamine cell firing through disinhibition (73, 141, 142, 154,
225). Psychostimulants, such as cocaine and amphet-
amine, prolong the duration of synaptically released do-
pamine in the extracellular space (274, 319, 413). The fact
that drugs such as cocaine and morphine affect dopamine
cells by separate mechanisms would explain the synergis-
tic effect of these two agents on dopamine release in the
nucleus accumbens (186). An increase in firing caused by
disinhibition in the VTA in combination with inhibition of
dopamine uptake work together to augment dopamine
tone in many projection areas. The synergistic release of
dopamine may underlie the popularity of this combina-
tion of drugs (speedballs) and may also explain the use of
other combinations of drugs.

A reliable and commonly used measure of the rein-
forcing value of many drugs employs intracranial self-
stimulation (528). Many reinforcing drugs including opiates,
psychostimulants, nicotine, alcohol, and cannabinoids
lower the threshold for self-stimulation, whereas with-
drawal from chronic treatment increases the threshold
(528). Thus the circuitry involved in stimulus-induced
reward seems to overlap with many but not all drugs of
abuse. Part of this circuitry includes the activation of
dopamine cells in the VTA. Stimulating electrodes placed
in, but not outside, the VTA were capable of evoking
dopamine release in the nucleus accumbens and support-
ing self-stimulation (149). Once animals had acquired self-
stimulation, however, the release of dopamine in nucleus
accumbens was rarely observed, even though stimulation
induced by the experimenter was effective. The conclu-
sion suggested that dopamine release was necessary for
acquisition of self-stimulation, potentially indicating nov-
elty or expectation, but was less important than the re-
ward itself.

The activity of dopamine and striatal cells measured
with more natural reward has been examined in an ele-
gant series of studies in awake behaving monkeys by
Schulz and colleagues (192, 418, 487, 488). Briefly sum-
marized and oversimplified, it appeared that the firing rate
and pattern of dopamine cells could be predicted. Ini-
tially, the firing rate would increase upon the presentation
of a juice reward for a correct behavioral response. When
the behavioral response was learned and a sensory stim-
ulus (conditioning stimulus) was paired with the juice
reward, dopamine cells began to respond with an increase
in firing in response to the conditioning stimulus and not
the subsequent juice reward. If the conditioning stimulus
was given but no juice reward was presented, the firing
rate of dopamine cells decreased transiently at the time
when the juice would normally have been administered.
Thus it was concluded that the firing rate of dopamine
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cells could be a predictor of reward, an interpretation
consistent with that based on the measurement of dopa-
mine release in the nucleus accumbens in the self-stimu-
lation protocol. The inhibition of dopamine cell firing may
be a signal of disappointment when an expected reward
did not appear and is particularly interesting in relation-
ship to the depressed firing rate of dopamine cells during
withdrawal from morphine (116, 114), alcohol (117), nic-
otine (132), cannabinoids (115), and cocaine (prolonged
withdrawal, Ref. 1).

The changed activity of dopamine cells during with-
drawal from drugs of abuse is assumed to result in mod-
ulation of dopamine release in projection areas. In fact,
decreased dopamine release has been observed in the
nucleus accumbens with microdialysis after withdrawal
from ethanol, morphine, cocaine, and amphetamine (403).
The acute response of cells in both the nucleus accum-
bens and prefrontal cortex during self-administration of
reinforcing drugs is more complex than in dopamine cells.
For example, the change in firing rate of individual neu-
rons during self-administration of cocaine and heroin
were often in the opposite direction (74). Similar results
were obtained with self-administration of cocaine or wa-
ter while recording activity in the nucleus accumbens
(67). These studies conclude that the regulation of activity
in response to different reinforcers utilized heteroge-
neous but overlapping neuronal circuits and that the firing
rate and pattern is dependent on the behavioral state of
the animal or the specific cues associated with adminis-
tration of the reinforcer. The activity of dopamine cells
seems predictable, suggesting that the phasic activity of
dopamine cells is more or less synchronous. It is there-
fore possible that a global rise in dopamine resulting from
a burst of activity in the VTA has by itself little or no
long-term effect in projection areas. The important and
potentially lasting effect(s) of dopamine may be depen-
dent on the activity in projection areas that coincides with
the release of dopamine. Thus dopamine may modify pre-
and postsynaptic elements such that the likelihood of
inducing synaptic plasticity (LTP and LTD) at active syn-
apses is increased. Interestingly, the activation of adeny-
lyl cyclase through D1/D5 receptors induced a long-lasting
potentiation of the EPSP in the CA1 region of the hip-
pocampus (194), suggesting a role for dopamine in LTP in
other brain regions. Generalized rises and falls in dopa-
mine levels when superimposed on different patterns of
afferent input would affect various groups of neurons in
different ways. Given the structure of the dorsal striatum
and nucleus accumbens where the activity of groups of
output neurons is highly dependent on the activity of
inhibitory interneurons (13, 164, 263), drugs and experi-
mental conditions could affect synaptic activation of
groups of neurons differentially.

B. Cellular and Synaptic Adaptations:

The cAMP Cascade

The most intensively studied long-term action of co-
caine and amphetamine is an increased sensitivity to the
locomotor activation induced by cocaine and/or amphet-
amine (234, 261, 397, 422). This sensitization can be very
long lasting, and the cellular and synaptic mechanisms
that mediate this persistent change are of obvious signif-
icance. Interestingly, psychostimulants can result in
cross-sensitization to opioids (230, 233, 235, 456). There is
considerable evidence that the VTA is a key site involved
in the induction of sensitization (375, 482, 457, 501). First,
repeated administration of opioids or psychostimulants
directly into the VTA causes sensitization. Second, sensi-
tization caused by systemically applied psychostimulants
can be blocked by microinjection of antagonists (gluta-
mate and D1 dopamine) into the VTA (231, 232, 530).

The induction of sensitization has several compo-
nents and has been reviewed extensively (234, 261, 397,
422, 518). The activation of the cAMP cascade through D1

dopamine receptors in the VTA has been suggested to be
one such component (482), because blockade of D1 do-
pamine receptors (375, 457, 501) and inhibitors of PKA
prevented (482) the induction of sensitization. Although
D1 activation of adenylyl cyclase and PKA is a necessary
component for the induction of sensitization to psycho-
stimulants, the activation of PKA alone was ineffective.
This suggests that the D1 receptors located on GABA
projections from the nucleus accumbens and/or gluta-
mate terminals projecting from the prefrontal cortex are
important. The release of transmitter from each is in-
creased by D1 receptor activation (63, 134, 378). Although
opioids inhibit release from both terminals, the increased
release of dopamine resulting from the disinhibition of
firing would be expected to activate D1 receptors. Given
the role of adenylyl cyclase in sensitization, it would seem
that the upregulation of adenylyl cyclase with chronic
administration of opioids is a likely mechanism leading to
the induction of sensitization (482). In fact, acute with-
drawal has been observed to increase presynaptic inhibi-
tion by opioids at synapses where adenylyl cyclase activ-
ity has been upregulated (54, 86, 430). An increased
sensitivity to the opioid inhibition of GABA release was
observed in the PAG during opioid withdrawal, as was the
inhibition caused by clonidine, an a2-adrenoceptor ago-
nist, indicating that a mechanism downstream of the opi-
oid receptor was upregulated by chronic morphine treat-
ment (203). From this result it could be predicted that
sensitivity to activation of any Gi/o-coupled receptor, in-
cluding the cannabinoid receptor, would result in an in-
creased response. It is not known, however, how long
after withdrawal this increased sensitivity remains.

One adaptation that lasted for at least 7–10 days
following withdrawal from repeated injections of mor-
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phine, cocaine, and amphetamine was an increase in pre-
synaptic inhibition caused by endogenous adenosine (41,
136). Originally done in brain slices from guinea pigs
treated with either morphine or cocaine, the presynaptic
regulation of the GABAB IPSP measured in dopamine
cells of the VTA was significantly changed in drug-treated
animals. This work showed that the activation of adenylyl
cyclase by either D1 receptors or forskolin had two op-
posing actions. One was to augment GABA release
through the activation of PKA, and the second was to
inhibit GABA release by activation of a presynaptic A1

adenosine receptor. In slices from drug-treated animals,
the enhancement of inhibition by adenosine was so great
that the effect of D1 receptor activation reversed direction
and inhibited, rather than augmented, GABAB IPSPs. This
inhibition was blocked by adenosine receptor antagonists
and by agents that blocked the transport (probenicid) or
metabolism (a phosphodiesterase inhibitor) of cAMP. The
opposing actions of forskolin have been reported in sev-
eral brain areas (41, 53, 86, 287, 310, 401). It remains to be
determined, however, how general the persistent increase
in extracellular adenosine is and by what mechanism it
occurs. It appears to be a synapse-selective effect in that
it is not observed at all opioid-sensitive synapses. In fact,
different synapses on an individual cell can be differen-
tially affected. In the VTA, GABA synapses are regulated
by endogenous adenosine during withdrawal, but gluta-
mate synapses are not (311, 430). Likewise in the PAG,
GABA synapses were unaffected, despite the fact that
there is a marked increase in cAMP-dependent GABA
release (22, 203). The selectivity could result from differ-
ential sensitivity to adenosine, but more likely results
from a localized metabolism of cAMP to adenosine. A
cAMP-dependent phosphodiesterase is the presumed can-
didate for an increased metabolism, since ectonucleoti-
dases have been reported to be ubiquitously expressed
and highly active in brain slices (127).

VI. CONCLUSIONS

The understanding of the acute and chronic effects of
opioids has expanded tremendously in the past 25 years.
Three major subtypes of opioid receptor were identified
pharmacologically using highly selective agonists and an-
tagonists, and these have been confirmed at the molecular
level. Although agonists at each receptor had different
effects measured in behavioral assays, the consequences
of receptor activation were similar, if not identical, at the
cellular level. Historically, opioid-sensitive effectors in-
cluded the inhibition of adenylyl cyclase, activation of
potassium conductance, inhibition of calcium conduc-
tance, and the inhibition of transmitter release. This list of
effectors has grown considerably in recent years, in part
as a result of studies on the effects of chronic treatments

with opioids. However, the potential roles of these diverse
cellular opioid effectors in adaptive responses to opioids
have yet to be fully elucidated.

The recent molecular characterization of the three
subtypes of opioid receptor was a critical step in further-
ing the knowledge of events leading to tolerance at the
cellular level. Issues of receptor subunit stoichiometry
and composition, sites of interaction with G proteins, the
role of phosphorylation sites, and mechanisms of traffick-
ing are currently areas of intense investigation. The re-
sults from these studies will most certainly facilitate the
understanding of the mechanisms responsible for desen-
sitization, downregulation, and tolerance at the cellular
level. Thus the passive adaptations underlying opioid tol-
erance are becoming clearer due to advances in the mo-
lecular understanding of the receptor and its interaction
with proximal signaling elements. However, the molecu-
lar mechanisms critical for tolerance development, such
as GRK-dependent desensitization of coupling to effec-
tors, phosphorylation events and internalization, or nu-
clear modulation of receptor signaling and turnover have
still not been clearly resolved. The role of these processes
in the development of tolerance within functioning neural
systems, whole animals, and humans remains virtually
unknown but will come from examination and manipula-
tion of the relevant signaling cascades in specific neural
systems and whole animals.

Potential counteradaptive mechanisms in cellular
and synaptic physiology following chronic opioid treat-
ment have only recently been examined. Some of these
studies were based on knowledge gained from biochem-
ical work done in cell lines but have recently been con-
firmed in neurons thought to be important for mecha-
nisms of opioid dependence. Upregulation of adenylyl
cyclase has long been recognized as a model for counter-
adaptation in cell lines, but identification of its physiolog-
ical consequences in central neurons is relatively recent.
Both the excitability of nerve cell bodies and individual
synapses are dramatically altered by this process. Coun-
teradaptations of this kind are restricted to specific
groups of opioid-sensitive nerve cell bodies and synapses,
contingent on the nature of signaling elements such as
sodium channel subtypes and adenylyl cyclase isoforms
expressed. The specific neural systems that appear to be
involved in mediating different aspects of opioid depen-
dence such as somatic and aversive components of opioid
withdrawal, are also becoming clear. Our understanding
of the mechanism(s) involved in these counteradapta-
tions is still in its early stages, but the molecular tools that
are presently being developed to manipulate signaling
elements in functioning central and peripheral neurons
will greatly facilitate this process.

Counteradaptations in the function of individual syn-
apses are particularly significant. Although adaptations in
the excitability of nerve cell bodies are well recognized,
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the probability of transmitter release at some central
synapses is exquisitely sensitive to changes that occur in
the activity of second messenger systems, e.g., adenylyl
cyclase. These changes in individual synapses are remi-
niscent of some of the molecular mechanisms crucial for
synaptic memory formation in the CNS. Thus drug-in-
duced changes may represent a pathological form of
memory at the level of individual synapses. Considerable
effort and progress have been made in understanding
synaptic plasticity, particularly at two synapses in the
hippocampus. To date, similar studies in other brain re-
gions have been limited, and studies on the interaction
between acute or chronic opioid treatment have been
almost nonexistent. One of these regions, the mesolimbic
dopamine system, appears to be important in the forma-
tion of associations between salient environmental stim-
uli and internal cues. Disruption or distortion of synaptic
plasticity in this system resulting from chronic opioid (or
other drug) use may be one of the keys to understanding
the induction of compulsive drug-seeking behavior, a core
feature of addiction. Adaptive responses resulting from
chronic opioid administration are also dependent on the
context in which the drug is taken. This learned compo-
nent to drug dependence implies that mechanisms in-
volved in activity-dependent synaptic plasticity are an
important and as yet little explored avenue.
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