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Abstract—Gamma oscillations have long been considered

to emerge late in development. However, recent studies

have revealed that gamma oscillations are transiently

expressed in the rat barrel cortex during the first postnatal

week, a ‘‘critical’’ period of sensory-dependent barrel map

formation. The mechanisms underlying the generation and

physiological roles of early gamma oscillations (EGOs) in

the development of thalamocortical circuits will be dis-

cussed in this review. In contrast to adult gamma oscilla-

tions, synchronized through gamma-rhythmic perisomatic

inhibition, EGOs are primarily driven through feedforward

gamma-rhythmic excitatory input from the thalamus. The

recruitment of cortical interneurons to EGOs and the emer-

gence of feedforward inhibition are observed by the end of

the first postnatal week. EGOs facilitate the precise synchro-

nization of topographically aligned thalamic and cortical

neurons. The multiple replay of sensory input during EGOs

supports long-term potentiation at thalamocortical syn-

apses. We suggest that this early form of gamma oscilla-

tions, which is mechanistically different from adult gamma

oscillations, guides barrel map formation during the critical

developmental period. � 2013 IBRO. Published by Elsevier

Ltd. All rights reserved.
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INTRODUCTION

Neuronal synchronization in gamma (30–90 Hz)

oscillations is fundamental for cortical functions. In the

adult brain, gamma oscillations have been hypothesized

to subserve perceptual binding and facilitate the

transient formation of functional assemblies through the

synchronization of neuronal firing, thereby supporting

synaptic plasticity. A number of excellent reviews have

addressed the physiological mechanisms underlying the

generation and role of gamma oscillations in cognitive

functions in the adult brain (Gray and Singer, 1989;

Singer and Gray, 1995; Fries et al., 2001; Buzsaki and

Draguhn, 2004; Fries, 2009; Wang, 2010; Whittington

et al., 2011; Buzsaki and Wang, 2012). Considerable

evidence indicates that the synchronization of neurons

in gamma oscillation is based on synchronous inhibition

through fast-spiking perisomatic parvalbumin-containing

basket interneurons (Bartos et al., 2007; Whittington

et al., 2011; Buzsaki and Wang, 2012). Gamma

oscillations have long been considered to emerge

relatively late in development. In humans, gamma

oscillations emerge several months after birth and show

a developmental increase until adulthood (for review,

(Uhlhaas et al., 2010). Similarly, in rodents, gamma

oscillations emerged during the second postnatal week

(Leinekugel et al., 2002; Lahtinen et al., 2002; Doischer

et al., 2008). This delayed development of gamma

oscillations likely reflects the delayed maturation of the

perisomatic inhibition. Indeed, in rodents, basket cells

develop fast-spiking features, forming synapses with

excitatory cells and establishing chemical and electrical

synapses with other basket cells from the end of the

first postnatal week, and the maturation of these cells

proceeds through the first postnatal month (Du et al.,

1996; Chattopadhyaya et al., 2004; Daw et al., 2007;

Huang et al., 2007; Doischer et al., 2008; Okaty et al.,

2009; Wang and Gao, 2010; Goldberg et al., 2011;
d.
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Pangratz-Fuehrer and Hestrin, 2011; Yang JM et al.,

2012). The long-range gamma synchronization of

neuronal activity also depends on the development of

supragranular cortical layers and horizontal intracortical

connections that also show delayed development from

the second postnatal week in rodents (Luhmann et al.,

1986; Bureau et al., 2004; Borgdorff et al., 2007).

Therefore, similar developmental profiles of gamma

oscillations, perisomatic inhibition and intracortical

connectivity fit the widely-accepted theory of gamma

rhythmogenesis.

Recent studies have revealed that oscillations at

gamma frequencies are transiently expressed in the rat

barrel cortex during the first postnatal week (Yang et al.,

2009; Minlebaev et al., 2011; Yang JW et al., 2012),

well before the emergence of perisomatic inhibition and

the development of supragranular layers. In the present

review, we will describe the distinct features, generative

mechanisms and potential physiological roles of these

early gamma oscillations (EGOs) during cortical

development.
EGOs: electrographic features

EGOs are short-lived oscillations lasting approximately

200 ms in the gamma frequency range (peak frequency

about 55 Hz), reliably evoked through sensory

stimulation (Minlebaev et al., 2011; Yang JW et al.,

2012). EGOs can also occur spontaneously (Yang

et al., 2009) in the rat barrel cortex during the first

postnatal week. EGOs characterize the initial part of a

complex sensory-evoked response, which also

comprises spindle-burst (8–25 Hz) oscillations (Khazipov

et al., 2004; Minlebaev et al., 2007; Yang JW et al.,

2012). EGOs and spindle-bursts, in turn, are nested in a

delta-wave lasting approximately 500 ms (Marcano-Reik

and Blumberg, 2008; Minlebaev et al., 2009). EGOs are

best observed in the layer 4 (L4) of a cortical barrel

column after a brief deflection of a single principal

whisker. However, EGOs are hard to detect in

responses evoked through the stimulation of multiple

whiskers, during which slower spindle-burst oscillations

dominate the activity (Minlebaev et al., 2007, 2009;

Colonnese et al., 2010).
Developmental profile of EGOs and relevance to
premature human electroencephalograms (EEGs)

As a part of the immature sensory response, EGOs are

expressed in the barrel cortex during a restricted

developmental time window, i.e., the first postnatal

week, where the cortical barrel map is formed,

representing a critical period of sensory-dependent

thalamocortical plasticity in the barrel cortex (Fig. 1)

(Van der Loos and Woolsey, 1973; Fox, 1992, 2002;

Erzurumlu and Gaspar, 2012). The close of the critical

period in the L4 barrel cortex by the end of the first

postnatal week coincides with an abrupt disappearance

of EGOs and immature bursting (Colonnese et al.,

2010; Minlebaev et al., 2011). This coincidence

suggests an involvement of the immature activity
patterns, including EGOs, in barrel map development

during the critical period.

Although there is agreement on the developmental

disappearance of EGOs in the barrel cortex after P7–8,

the onset of these oscillations is somewhat

controversial. Yang and colleagues have reported that

EGOs are observed at birth (postnatal day 0 (P0))

(Yang JW et al., 2012), whereas Minlebaev and

colleagues (Minlebaev et al., 2011) have observed only

delta-waves, occasionally organized in groups of 2–3

delta-waves, without any significant patterning of activity

in the gamma frequency at P0–1 (see an example

response at P1 in Fig. 1B), and an emergence of

gamma oscillations starting from postnatal day P2

(Minlebaev et al., 2011).

In human premature neonates aged <25 gestational

weeks, corresponding to the earliest stages of

thalamocortical development compared with the late

embryonic/term rat (Higashi et al., 2002; Kostovic and

Judas, 2010), intermittent ‘‘smooth’’ delta waves lacking

rapid oscillatory components (‘‘brushes’’) dominate the

electroencephalographic activity. These delta wave

oscillations, reminiscent of the responses evoked

through sensory stimuli in the P0–1 rat barrel cortex

shown in a previous study (Minlebaev et al., 2011),

become intermixed with rapid rhythms (‘‘delta-brushes’’)

by the seventh month of gestation in humans. Delta-

brushes constitute dominant activity patterns in all

cortical areas and fade near term (Anderson et al.,

1985; Stockard-Pope et al., 1992; Lamblin et al., 1999;

Scher, 2006; Andre et al., 2010). Similarly in rats, delta-

brushes are also reliably evoked through sensory stimuli

in the somatosensory and visual cortex of premature

neonates (Hrbek et al., 1973; Milh et al., 2007;

Colonnese et al., 2010; Stjerna et al., 2012). Therefore,

from the developmental standpoint, a similar

developmental sequence of smooth delta waves

followed by delta-brushes is also expected in the rat.

Thus, it would be of interest to know whether delta

waves without EGOs are present in fetuses and preterm

neonates in rats, which display EGOs at birth, and mice,

in which barrel map development is delayed 1–2 days

compared with rats (Rhoades et al., 1990; Schlaggar

et al., 1993; Rebsam et al., 2002).

The rapid rhythms of delta-brushes in premature

human neonates typically occur within an 8–25 Hz

frequency band, and the association of delta-brushes

with an activity at gamma frequency has not been

reported (Ellingson, 1958; Dreyfus-Brisac, 1962;

Parmelee et al., 1969; Nolte et al., 1969; Goldie et al.,

1971; Watanabe and Iwase, 1972; Hrbek et al., 1973;

Engel, 1975; Vanhatalo et al., 2002, 2005; Milh et al.,

2007; Colonnese et al., 2010; Dreyfus-Brisac, 1962).

Therefore, it remains unknown whether EGOs are

present in humans. Notably, in the rat, EGOs are

restricted to the L4 of a single cortical column and are

hardly detected, even during intracortical recordings

near the cortical surface (Fig. 2C) (Minlebaev et al.,

2011), suggesting that EGOs would also be hard to

detect using conventional scalp EEG recordings from

premature human babies. However, it might become



Fig. 1. Development of gamma oscillations in the rat somatosensory cortex. (A) Age-dependent power of sensory-evoked gamma oscillations in the

L4 of the somatosensory barrel cortex. Early gamma oscillations (EGOs) are expressed during the critical period of thalamocortical plasticity in the

whisker-barrel system and abruptly disappear at the end of the critical period. The emergence of adult gamma oscillations is associated with the

onset of explorative behaviors and active whisking. (B) Sensory responses evoked through brief single whisker deflection in the L4 layer of the

corresponding cortical column at different postnatal ages (at P1, recordings are from the dense cortical plate). Example traces show the local field

potential (black traces) and multiple unit activity (spikes, red bars). The stimulus is indicated using vertical red lines. Below, gamma band (20–

100 Hz)-filtered traces. Note the lack of gamma oscillations at P1, EGOs evoked in a P4 rat, disappearance of EGOs in a P10 rat and an UP state

associated with gamma activity in a P33 rat. Note the developmental increase in pre-stimulus continuous baseline activity occurring in a

counterpoint to the disappearance of early gamma oscillations. Adapted from Minlebaev et al. (2011) with permission.
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feasible to detect EGOs through reducing the electrode

size, increasing topographic stimulations and taking

advantage of the stimulus-lock feature of EGOs, which

facilitates the detection of these oscillations in an

average response.

As scalp EEG recordings in humans only reveal a

progressive increase of gamma activity during the

postnatal and adolescent period (Uhlhaas et al., 2010),

intracortical recordings from the cortical surface in the

rat also show only a progressive developmental

increase in gamma power from the second postnatal

week onward, without revealing the transient expression

of gamma activity, which is restricted to L4, during the

first postnatal week (Minlebaev et al., 2011). These later

emerging gamma oscillations likely correspond to

classical inhibition-based gamma oscillations, and their

development correlates with emerging explorative
functions and, in the case of the barrel system, is also

associated with an onset of active whisking (Landers

and Philip, 2006; Colonnese et al., 2010).
Time lock to stimulus

In the adult brain, sensory-induced cortical gamma

oscillations typically occur with variable delays from trial

to trial after stimulus onset and therefore, these induced

gamma oscillations are essentially lost during multiple

response averaging (Tallon-Baudry and Bertrand, 1999).

Thus, EGOs are different from the induced adult gamma

oscillations, as their temporal relationship with the

stimulus is preserved from trial to trial (Fig. 2). As a

result, stimulus-locked EGOs are apparent in the

stimulus-triggered average local field potentials (LFPs)

and spike time histograms during the first 200 ms of the



Fig. 2. Main features of the early gamma oscillations. (A) Scheme of the experimental setup for recordings of electrical activity from a cortical barrel

column. (B) Recording sites of a multi-electrode array overlaid on a Ctip-2-stained coronal slice. (C) Sensory response evoked through C2 principal

whisker (PW) stimulation at different depths of the C2 cortical barrel column (LFP-black traces, bandpass 5–100 Hz; MUA-red bars overlaid on a

color-coded current source density plot (CSD)). Below: the stimulus-triggered averages (n= 100) for (L4) (red asterisk) wavelet spectrogram,

average L4 layer LFP and MUA PSTHs across layers. Recordings from a P6 rat. (D) Simultaneous voltage-sensitive dye imaging (VSDI) and the

multi-electrode recording of sensory-evoked cortical responses. Mechanical stimulation of the C2 whisker in a P1 rat elicits local VSDI (left) and local

electrophysiological (right) responses in the C2 barrel (D2). Color-coded localization of the evoked cortical VSDI (left) and electrophysiological

(right) responses to stimulation of single whiskers in arc 2 (D3). The first negative peak amplitude of the electrophysiological response corresponds

to the size of the color-coded circles as shown below the graph. Adapted from Minlebaev et al. (2011) (A–C) and Yang JW et al. (2012) (D) with

permission.
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sensory-evoked response (Fig. 2C) (Minlebaev et al.,

2011; Yang JW et al., 2012).

Although the stimulus-locked feature and dominant

frequency of EGOs do not change through the first

postnatal week, delays in EGOs from the stimulus are

strongly age dependent, attaining values of

approximately 50–60 ms at P2–3 and showing a nearly

twofold reduction to 30 ms at P7. This reduction likely

reflects an increase in the velocity of axonal spikes

transmission along the three-synaptic somatosensory

pathway. In this regard, it is surprising that the

frequency of EGOs remains unchanged during this

period. EGOs are primarily driven through the thalamic

gamma oscillator (see below), suggesting a fundamental

mechanism of thalamic gamma rhythmogenesis, which

is transiently expressed and facilitates the maintenance

of gamma activity at a fixed frequency during the first

postnatal week; notably, this mechanism occurs

independent of the axonal conduction velocity.
Spatial characteristics of EGOs

The spatial properties of EGOs were addressed using

voltage-sensitive dye (VSD) imaging,
electrophysiological recordings of the LFPs and multi-

unit activity (MUA) in the barrel cortex using multishank

electrode arrays (Fig. 2) (Minlebaev et al., 2011; Yang

JW et al., 2012). Both approaches revealed the

compartmentalization of EGOs within a cortical barrel

receiving input from the corresponding whisker. In VSD

recordings, cortical areas responding to the stimulation

of a single whisker were 200–300 microns in diameter in

P0–5 rats, which corresponds to the size of the barrel

column, and these responses barely overlapped

(Fig. 2D) (Yang JW et al., 2012). In older animals, the

cortical areas activated through single whisker

stimulation increased to involve adjacent columns (see

also (Borgdorff et al., 2007)). Extracellular LFP and

multiple unit recordings also showed segregated

responses between neighboring barrel columns

(Minlebaev et al., 2011; Yang JW et al., 2012).

The confinement of EGOs to a single cortical barrel

suggests support through topographic synapses

connecting neurons in corresponding thalamic barreloids

and cortical barrels. These results also indicate that

functional connectivity in the thalamocortical system is

precise during the first postnatal week. However, non-

topographic inputs from adjacent barreloids also exist
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but remain weak and subthreshold, supported through

whole-cell recordings of the responses evoked through

adjacent whisker stimulation (Minlebaev and Khazipov,

unpublished observation). These ‘‘latent’’ non-

topographic synapses likely undergo pruning at a critical

period similar to pruning of the aberrant connections

described during the development of various circuits

(Crepel et al., 1976; Rakic, 1977; Campbell and Shatz,

1992; Katz and Shatz, 1996; Lichtman and Colman,

2000; Chen and Regehr, 2000; Debski and Cline, 2002;

Ruthazer et al., 2003). However, these subthreshold

non-topographic inputs might also provide the basis for

an expansion of synapses established through neurons

in neighboring barreloids to sensory-deprived cortical

territories (Van der Loos and Woolsey, 1973; Simons

and Land, 1987; Fox, 1992, 2002).

In adults, gamma oscillations facilitate the

synchronization of activity in adjacent cortical columns

(Engel et al., 1990), which primarily occurs at the level

of supragranular cortical layers 2/3 (L2/3), displaying the

highest power of gamma activity (Minlebaev et al.,

2011). However, during the first postnatal week, L2/3

are weakly activated during sensory responses

(Armstrong-James, 1975; Stern et al., 2001; Bureau

et al., 2004; Minlebaev et al., 2011). The development

of L4? L2/3 synapses rapidly occurs during the second

postnatal week (Micheva and Beaulieu, 1996; Stern

et al., 2001; Bender et al., 2003; Maravall et al., 2004;

Bureau et al., 2004), also referred to as a critical period

for these connections (Stern et al., 2001; Feldman and

Brecht, 2005; Feldman, 2009). L2/3? L2/3 synapses

are also initially sparse and start to support the

horizontal spread of activity from the end of the first

postnatal week (Borgdorff et al., 2007; Gireesh and

Plenz, 2008; Yang JW et al., 2012). Thus, the

confinement of EGOs to a single column likely reflects

the immaturity of the supragranular layers.
Synaptic correlates of EGOs

Whole cell recordings of synaptic currents from L4

neurons and pharmacological analyses revealed several

features of EGOs that are remarkably distinct from adult

gamma oscillations (Figs. 3 and 4) (Minlebaev et al.,

2011): (i) EGOs are primarily generated through

gamma-rhythmic glutamatergic excitatory postsynaptic

currents (EPSCs), which generate active sinks of field

EGOs in L4 (Fig. 4F); in contrast, adult gamma

oscillations are primarily generated through gamma-

rhythmic inhibitory postsynaptic currents (IPSCs) that

generate active sources of field gamma oscillations

(Fig. 3C, D) (Penttonen et al., 1998; Csicsvari et al.,

2003; Mann et al., 2005; Hasenstaub et al., 2005; Oren

et al., 2010); (ii) The engagement of IPSCs to EGOs is

age-dependent: before P5, only few neurons display any

IPSCs, and if present, these responses occur at the end

of EGOs; by P5–7, IPSCs show gamma-rhythmicity

during EGOs. However, the relative conductance and

gamma-power of IPSCs are inferior to EPSCs during

this period, in contrast to adult gamma oscillations,

characterized by the domination of IPSCs (Fig. 3E)
(Mann et al., 2005; Hasenstaub et al., 2005); (iii) The

blockade of cortical inhibition does not modify EGOs at

P2–4, but strongly reduces these oscillations at P6

(Fig. 3A). Thus, EGOs primarily result from a gamma-

rhythmic excitatory input to L4 neurons, constituting the

only drive for EGOs during the first postnatal days.

Local inhibitory circuits, central for gamma

rhythmogenesis in adult networks, are progressively

recruited and support EGOs only by the end of the first

postnatal week.

Thus, what is the source of the gamma-rhythmic

glutamatergic EPSCs that drive EGOs in L4? In adults,

L4 neurons receive excitatory inputs from the thalamus

(approximately 15% of the total number of inputs

(Benshalom and White, 1986)), and the remaining

inputs are generated from the adjacent excitatory

neurons of the home barrel (Lefort et al., 2009;

Feldmeyer, 2012). Both types of synapses, thalamic and

local, generate active sinks in L4. Although the

involvement of thalamic inputs is clear, as the troughs of

gamma oscillations and associated firing of cortical

neurons are tightly locked, and these inputs occur at

standard delays after the activation of thalamic VPM

units (Minlebaev et al., 2011; Yang JW et al., 2012),

little is known about L4–L4 connectivity during the first

postnatal week and the participation of these synapses

in the generation of EGOs. If present, these connections

would cooperate with the thalamic input, and given the

intrabarrel connectivity pattern, these connections would

contrast the topographic organization of the cortical

activity (Douglas et al., 1995).

Electrical synapses between excitatory L4 neurons

present another mechanism that could potentially

support neuronal synchronization during EGOs. The

level of connectivity between cortical neurons via gap

junctions attains nearly 40–70% during the first

postnatal week (Connors et al., 1983; Yu et al., 2012).

Interestingly, lineage-dependent transient electrical

coupling between the pyramidal cortical cells guides the

formation of excitatory synapses in ontogenic columns

(Yu et al., 2012). Several correlated activity patterns,

synchronized through gap junctions, have been

described in slices of the developing cortex in vitro,
including correlated calcium waves, neuronal domains,

spontaneous plateau assemblies, and carbachol-

induced beta oscillations (Yuste et al., 1992, 1995;

Kandler and Katz, 1998; Peinado, 2000, 2001; Dupont

et al., 2006; Crepel et al., 2007). Gap junctions between

excitatory neurons are eliminated after the first postnatal

week (Connors et al., 1983; Yu et al., 2012) in a

counterpoint to the emergence of the electrical and

chemical synapses between the fast-spiking

interneurons (instrumental for adult gamma

rhythmogenesis) during the second postnatal week

(Yang JM et al., 2012). Thus, the participation of

electrical synapses in the synchronization of EGOs is a

plausible mechanism. However, the existence of

electrical synapses between L4 stellate cells during the

first postnatal week and the roles of these cells in

neuronal synchronization during EGOs also remain

unknown.



Fig. 3. Developmental recruitment of GABAergic inhibition in the synchronization of gamma oscillations. (A) Extracellular EGOs evoked through

principal whisker deflection in L4 in P4 and P6 rats before (black traces) and after (red traces) the epipial application of the GABA(A) receptor

blocker gabazine. Note that the blockade of inhibition does not affect EGOs at P4 but reduces these oscillations at P6. (B) Proposed network EGOs

model. Sensory input from a whisker activates the gamma oscillator in the thalamic barreloid, which imposes topographic feedforward

synchronization in the corresponding cortical barrel [1]. Cortical interneurons become involved in EGOs in an age-dependent manner starting from

�P5 [2]. (C) Three consecutive examples of synaptic currents arriving in a layer 5 pyramidal cell in vitro while voltage is clamped near the reversal

potential of the UP state (�20 mV in this cell) and one trace at �60 mV. The local application of picrotoxin (right traces) results in a marked decrease

in higher-frequency components of the synaptic currents. (D) Intracellular recordings in the ferret prefrontal cortex illustrating the amplitude and time

course of excitation-dominated synaptic barrages recorded at �80 mV (red) and inhibition-dominated barrages recorded at 0 mV (blue), for two

representative UP states. Membrane potentials are expanded further for illustration (inset). (E) Age-dependence of the IPSC/EPSC gamma power

ratio. Adapted from Minlebaev et al. (2011) (A, B, E) and Hasenstaub et al. (2005) (C, D) with permission.
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Thalamic origin of EGOs

Sensory input to the cortex is relayed via the thalamus

(Castro-Alamancos, 2004; Jones, 2009). Several lines
of evidence obtained using simultaneous recordings

from the topographically aligned neurons in the

thalamus and cortex indicate that gamma-rhythmic

excitation is relayed to L4 neurons during cortical EGOs



Fig. 4. Development of the feedforward inhibition. (A) Drawing of a thalamocortical slice. Responses evoked through the stimulation of the thalamus

are recorded in a L4 stellate cell. (B) In current-clamp mode, the blockade of GABA(A) receptor-mediated transmission with bicuculline affects

thalamocortical-evoked responses in stellate cells at P8 but not at P4. (C) In voltage clamp mode, IPSCs are only weakly and unreliably activated

through thalamocortical input in the neonate, but strongly activated by P7–9. (D) Age-dependence of the GABA(A) receptor-mediated IPSC ratio to

EPSC. (E) In a P4 rat in vivo, the blockade of cortical GABA(A) receptors with gabazine does not affect the inhibition of spikes (dip) after the

sensory-evoked potential. (F) Whole-cell responses evoked through principal whisker stimulation in L4 neurons at P3 and P6 recorded in voltage

clamp to separate IPSCs (blue top traces at 0 mV) and EPSCs (red bottom traces at �75 mV). (G) Age dependence of the integration window,

defined as the difference between EPSCs and IPSCs onset delays. Adapted from Daw et al. (2007) (A–D) and Minlebaev et al. (2011) (E–G) with

permission.
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through thalamic inputs (Minlebaev et al., 2011; Yang JW

et al., 2012). First, whisker stimulation evokes gamma

rhythmic MUA in the corresponding barreloid in the

ventral posterior medial (VPM) thalamic relay nucleus;

this thalamic gamma activity is highly coherent with

cortical EGOs such that thalamic units fire

approximately 7 ms ahead of cortical L4 neurons

(Fig. 5B). This thalamocortical binding is maintained for

eight EGO cycles, indicating a multiple replay of a

sensory input in topographic thalamocortical
microcircuits (Minlebaev et al., 2011). Second, the

electrical microstimulation of a barreloid reliably evokes

cortical EGOs, whereas barreloid lesions completely

eliminate both sensory-evoked and spontaneous EGOs

(Fig. 5C) (Yang JW et al., 2012). Finally, none of the

patterns of correlated activity in the isolated cortical

network in vitro correspond to EGOs observed in vivo
(Khazipov and Luhmann, 2006; Allene and Cossart,

2010). Thus, thalamic gamma oscillator is instrumental

for the generation of cortical EGOs. However, how



Fig. 5. Thalamic origin of the early gamma oscillations. (A) Experimental setup for simultaneous recordings of single whisker-evoked responses in

the corresponding VPM barreloid and cortical barrel column in a P6 rat in vivo. (B) Three sequential responses to C5 whisker deflections in the C5

barreloid of VPM thalamus (top) and average L4 LFP (red) and a histogram of spikes in C5 barreloid (black histogram) from 100 deflections. (C)

Local lesion of the thalamus (left panels) blocks spontaneously occurring cortical gamma burst activity. The pooled data from P1 rats illustrating the

relative number of MUA spikes and the power of the MUA spectrum in the 30–60 Hz range (panel 3). An example of spontaneous gamma and

spindle bursts before and after barreloid lesioning (traces in top panel 4). After barreloid lesioning, the gamma-containing spindle and pure gamma

bursts were completely blocked, and only pure spindle bursts were observed (lower panel 4). Adapted from Minlebaev et al. (2011) (A–B) and Yang

JW et al. (2012) (C) with permission. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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gamma oscillations are generated in the neonatal

thalamus remains elusive. In adults, thalamic neurons in

both relay and reticular nuclei maintain 40-Hz firing

during depolarization beyond �45 mV (Pinault and

Deschenes, 1992; Pedroarena and Llinas, 1997).
Supported through corticothalamic feedback, these

intrinsic oscillations might provide the basis for the

gamma range resonant activity in the cortico-thalamo-

cortical circuit (Steriade et al., 1996; Llinas et al., 1998;

Jones, 2009). Whether such mechanisms support
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gamma rhythmogenesis during the neonatal period is

unknown. Whole-cell recordings from neonatal mice

thalamocortical slices revealed depolarized values (�50/
�55 mV) of the resting membrane potential in thalamic

VP and reticular neurons (Warren and Jones, 1997).

Similar results have also been obtained in ferret dorsal

lateral geniculate nucleus (dLGN) during the early

postnatal period (Ramoa and McCormick, 1994). Both

studies have demonstrated that neonatal thalamic

neurons are more sensitive to depolarizing currents,

resulting from higher input resistance, and show

rhythmic firing with little adaptation. Synapses between

the relay and reticular thalamic nuclei and

thalamocortical and corticothalamic synapses are

already observed in P1 mice, and these synapses show

an abrupt developmental change in properties at the

end of the first postnatal week (Evrard and Ropert,

2009). Reticular neurons are also interconnected

through depolarizing GABAergic synapses and generate

network-driven giant depolarizing potentials (Pangratz-

Fuehrer et al., 2007). Therefore, during the first

postnatal week, the thalamic network possesses key

elements that could generate synchronized activities.

However, none of the developmental studies in vitro

have reported spontaneous or lemniscal-evoked forms

of thalamic activity organized in gamma oscillations

corresponding to the in vivo pattern of EGOs. Further

studies are required to elucidate the mechanisms of

neonatal thalamic gamma rhythmogenesis, which is

central to the understanding of the origins of EGOs.

Thalamic gamma oscillations might also rely on

feedforward excitation from the periphery. In the adult

cat visual system, simultaneous multiple unit recordings

showed strong synchronization of oscillatory responses

between retina, LGN and cortex, indicating that cortical

neurons can be synchronized through oscillatory activity

relayed from the retina through the LGN (Castelo-

Branco et al., 1998; Neuenschwander et al., 2002). This

feedforward synchronization mechanism, operating in

the 60 to 120-Hz frequency range, was primarily

observed for static stimuli. In contrast, in response to

moving stimuli, cortical synchronization occurred

independent of oscillatory inputs from the LGN, with

oscillation frequency ranging from 30 to 60 Hz. Whether

the generation of thalamic EGOs relies on the gamma

rhythmic input from the sensory periphery or relay

brainstem nuclei remains unknown. However, the single

microstimulation of a thalamic barreloid efficiently

triggers cortical EGOs (Yang JW et al., 2012),

suggesting that gamma patterns derived from the

sensory periphery or signals relayed from the brainstem

nuclei are not critical for gamma rhythmogenesis in the

neonatal VPM thalamus.

Perisomatic inhibition

The synchronization of adult gamma oscillations is

primarily based on synchronous inhibition through fast-

spiking perisomatic-projecting basket cells (Bartos et al.,

2007; Whittington et al., 2011; Buzsaki and Wang,

2012). The limited participation of GABAergic inhibition

in the generation of EGOs likely reflects the immaturity
of perisomatic inhibition during the first postnatal week.

Indeed, basket cells develop fast-spiking phenotypes,

incorporate into the network and form electrical and

chemical synapses from the end of the first postnatal

week, and the development of these cells proceeds

through the first postnatal month (Du et al., 1996;

Chattopadhyaya et al., 2004; Daw et al., 2007; Huang

et al., 2007; Doischer et al., 2008; Okaty et al., 2009;

Wang and Gao, 2010; Goldberg et al., 2011; Pangratz-

Fuehrer and Hestrin, 2011; Yang JM et al., 2012; Le

and Monyer, 2013). In addition to gamma-

rhythmogenesis, perisomatic basket cells also play a

pivotal role in feedforward inhibition, which sets the time

window for the integration of excitatory synaptic inputs

(Pouille and Scanziani, 2001; Wehr and Zador, 2003;

Gabernet et al., 2005; Higley and Contreras, 2006).

However, studies in neonatal mice thalamocortical slices

in vitro revealed that feedforward inhibition plays no

detectable role in regulating L4 circuit function and is

not activated through thalamocortical input during the

first postnatal week (Daw et al., 2007) (Fig. 4A–D),

reflecting a lack of functional connectivity between the

interneurons in the circuit, including weak subthreshold

thalamic inputs and low fast-spiking interneurons to

stellate cell connection probability and strength. At P6–

7, there is a coordinated increase in the thalamocortical

input to fast-spiking interneurons and in fast-spiking

interneurons to stellate cell functional connectivity,

associated with a depolarizing-to-hyperpolarizing switch

in the polarity of GABAergic responses, leading to the

developmental recruitment of feedforward inhibition. The

delayed development of the feedforward inhibition has

been also confirmed in vivo (Minlebaev et al., 2011).

Indeed, the onset of sensory-evoked IPSCs was

delayed for >100 ms from the onset of EPSCs at P2 to

P3 (Fig. 4F). This temporal integration window rapidly

shortened during the first postnatal week (Fig. 4G),

indicating the developmental recruitment of feedforward

inhibition through the end of the first postnatal week,

consistent with the observations obtained in vitro.
Accordingly, the suppression of units after the first peak

in stimulus-triggered unit histogram (dip) was

unchanged at P2–4, but was strongly reduced at P6

after the blockade of cortical inhibition (Fig. 4E). Taken

together with the delayed recruitment of inhibition to

EGOs, these results indicate that the two facets of

perisomatic inhibition, i.e., feedforward inhibition and

gamma synchronization, show remarkably similar

developmental profiles during the first postnatal week.

EGOs, synaptic plasticity and critical period

EGOs are expressed in the barrel cortex during a

restricted developmental time window, i.e., the first

postnatal week, a critical period for thalamocortical

barrel map development and refinement. The formation

of this map likely involves two processes: (i) the

strengthening and stabilization of synapses, connecting

neurons between topographically aligned thalamic

barreloids and cortical barrels and (ii) the depression/

elimination of the non-topographic synapses connecting

neurons in non-corresponding barreloids and barrels.
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The development of this map is critically dependent on

sensory-driven activity and likely involves N-methyl-D-

aspartic acid (NMDA) receptor-dependent long-term

potentiation and depression, the two forms of synaptic

plasticity regarded as functional precursors of further

synapse stabilization and elimination, respectively (Van

der Loos and Woolsey, 1973; Fox, 1992, 2002;

Feldman et al., 1999; Feldman and Brecht, 2005;

Feldman, 2009); see for the most recent update

(Erzurumlu and Gaspar, 2012). Consistent with this

hypothesis, the levels of NMDA-receptor-dependent

forms of synaptic plasticity (both long-term potentiation

and depression) are particularly high during the critical

period (Feldman et al., 1999).

Although it has not yet been explicitly demonstrated

for thalamocortical synapses during the first postnatal

week, considerable evidence indicates that

developmental synaptic plasticity follows the Hebbian

principle, suggesting that ‘‘neurons that fire together

wire together’’ (Hebb, 1949), and the rules of spike time-

dependent plasticity (STDP) (Debanne et al., 1996;

Markram et al., 1997; Song et al., 2000; Dan and Poo,

2006), suggesting that that synaptic connection between

two neurons will be potentiated if the presynaptic neuron

fires just before the postsynaptic neuron (causal

condition) and depressed if the postsynaptic neuron

fires ahead of the presynaptic neuron (acausal condition).

From the plasticity standpoint, EGOs provide

excellent conditions for potentiation at topographic

thalamocortical synapses. First, the lack of the

feedforward inhibition creates a wide window for the

powerful summation of thalamocortical inputs during

EGOs and the depolarization of stellate cells. During

each EGO cycle, the firing of postsynaptic stellate cells

occurs milliseconds after the firing of presynaptic

thalamic neurons, creating conditions for the

potentiation of the topographic thalamocortical

synapses. The plasticity impact should be multiplied by

a replay of this sequential thalamocortical firing for up to

eight consecutive EGO cycles, during which the STDP

causality rule is preserved, with postsynaptic stellate cell

firing, preceded by presynaptic thalamic neuron firing. In

addition, the temporal summation of EPSPs during

sensory-driven responses results in the depolarization of
Table 1. Distinct features of the early and adult gamma oscillations

Feature Early gamma oscillations

Age P 0 (2)–P7

Lock to stimulus Stimulus-locked, can be observed in avera

Spatial organization Restricted to a single cortical column

CSD profile Active sinks (maximal in L4)

Cellular Correlates L4 cells fire at high probability (20–50% d

Synaptic correlates Purely Glutamate before P5, glutamate >

Synchronization mechanism <P5: Feedforward (thalamic) gamma-exc

P5–7: Feedforward (thalamic) gamma-exc

Functions Synchronization of the topographically alig

neurons; multiple replay of sensory input a

synapses
stellate cells and facilitates the activation of NMDA

receptors; precisely, half of the current underlying delta

component of sensory response is mediated through

NMDA receptors (Minlebaev et al., 2009). Therefore, we

suggest that EGOs are instrumental for the long-term

potentiation of topographic thalamocortical synapses

with further enforcement and stabilization during the

critical period. However, the activation of non-

topographic synapses, which remain largely

subthreshold during sensory responses evoked through

neighbor whisker stimulation, creates acausal STDP

conditions to support long-term depression with further

elimination of these non-topographic synapses.

Although this hypothesis requires verification,

experiments performed in thalamocortical slices in vitro
provide support for this idea. Indeed, mimicking EGOs

in slices through paired subthreshold gamma-rhythmic

thalamic inputs with action potentials in L4 neurons

resulted in the long-term potentiation of thalamocortical

EPSPs (Minlebaev et al., 2011).
Summary points

1. Gamma oscillations are transiently expressed in L4 of

the barrel cortex during the critical period of barrel map

formation (first postnatal week). These EGOs are

mechanistically different from adult gamma oscillations

(Table 1).

2. Feedforward gamma-rhythmic input from thalamus is

essential for EGOs.

3. Perisomatic interneurons are recruited to EGOs by the

end of the first postnatal week, along with an emer-

gence of the feedforward inhibition. The lack of the

feedforward inhibition creates a wide integration win-

dow for excitatory inputs during EGOs.

4. EGOs synchronize topographically aligned thalamic

and cortical neurons, facilitate the multiple replay of

sensory input and create conditions for the STDP at

thalamocortical synapses.

5. Inhibition-based ‘‘adult’’ gamma oscillations that

enable horizontal synchronization emerge during the

second postnatal week as a result of delayed develop-

ment of perisomatic inhibition and associative layers.
Adult gamma oscillations

>P13

ge responses Non-locked to stimulus (induced), are

lost in average responses

Local and long-range synchronization

Multiple active sinks and active

sources (maximal in L2/3)

uring each gamma cycle) Cells fire at <5% probability during

each gamma cycle

GABA at P5–7 GABA> glutamate

itation

itation + local Inhibition

Synchronization through inhibition

ned thalamic and cortical

nd LTP at thalamocortical

Local and long-range binding of

cortical neurons in temporal

assemblies, STDP
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