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Electrophysiological recordings from behaving animals—going
beyond spikes
Edith Chorev, Jérôme Epsztein, Arthur R Houweling, Albert K Lee and
Michael Brecht
Most of our current knowledge about the neural control of

behavior is based on electrophysiology. Here we review

advances and limitations of current electrophysiological

recording techniques applied in behaving animals. Extracellular

recording methods have improved with respect to sampling

density and miniaturization, and our understanding of the

nature of the recorded signals has advanced. Juxtacellular

recordings have become increasingly popular as they allow

identification of the recorded neurons. Juxtacellular recordings

are relatively easy to apply in behaving animals and can be

used to stimulate individual neurons. Methods for intracellular

recordings in awake behaving animals also advanced, and it

has become clear that long-duration intracellular recordings

are possible even in freely moving animals. We conclude that

the electrophysiological methods repertoire has greatly

diversified in recent years and that the field has moved beyond

what used to be a mere spike counting business.
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Neural control of behavior is achieved through compu-

tations, in which neurons integrate electrical signals and

generate an output of electrical pulses. Electrophysiology

allows one to register such signals and thus is uniquely

suited to capture the brain’s natural language. Electro-

physiological techniques combine high spatiotemporal

resolution with ease of application making them particu-

larly attractive tools for awake behaving preparations.

Improved technology for extracellular
recording
Classically, work done in behaving animals was limited to

extracellular recordings of single units, multiple units and
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field potentials. There is a growing awareness for the need

to sample larger portions of the network and as a con-

sequence technologies for dense recordings from

multiple sites were developed. In recent years advances

in such technologies continue, making the recordings

more dense, the recording gear lighter and more robust.

Many variants of extracellular recording techniques are

available. Largely these methods can be clustered into

two groups: single sited electrodes (can be an array of such

electrodes) [1] and multi sited electrodes (i.e. stereo-

trodes) [2]. The advantages of the latter are that the

signals can be triangulated between several recording

points and thus the signals can be separated more reliably

into units. Using silicon probes over self-manufactured

probes has the advantage that they are smaller in size,

thus implicating less damage to the tissue recorded.

Nevertheless, the ease and cost effectiveness of tetrodes

make it the most popular approach for extracellular

neuronal recordings.

Extracellular recording have been and will continue to

dominate the field of system neuroscience. These tech-

niques led to major findings, one example is the field of

spatial learning and the hippocampus, using these tools

place cells were discovered [3] and their firing in relation

to theta cycle [4]. The use of multiple electrodes led to

the discovery of offline replay of spatial trajectories firing

patterns [5,6].

Limitations

The immense success of extracellular recordings should

not blind one to the limitations inherent to this approach.

The key problem is that the cellular elements that gen-

erate the recorded signals are not identified. To date

spike signals are often classified according to spike width

to putative excitatory neurons (with broader spikes) and

putative inhibitory neurons (with narrower spikes). What

remains problematic is that these methods are rarely

verified in vivo; furthermore it remains unclear, why some

authors observe and publish bimodal spike width distri-

butions (suggesting the existence of two separable cell

classes) while other investigators do not observe bimodal

spike width distributions. Another disadvantage is that

only the output signals of neurons, in the form of spikes,

can be recorded, leaving the synaptic inputs inaccessible.

It has become clear that extracellular recordings might be

subjected to considerable sampling biases such as

tendency to record from more active neurons and from
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larger neurons [7–10]. The application of novel optical

recording methods in awake behaving animals may

resolve such problems and the first results suggest that

cortical activity in awake behaving animals is much more

sparse than previously assumed [11]. Finally extracellular

methods are restricted to neuronal recording (as opposed

to controlled stimulation of the recorded neurons) and

thus the analysis is limited, almost exclusively, to a

correlative framework.

Advances

Increasing the number of recording electrodes allows for

better sampling of the neuronal population. Increasing

the density of recording sites allows for better separation

of the signal sources. Recently, the density of recording

sites was further increased by making the probes dual

sided. Employing a 3D architecture of the recording

device further improves the separation capabilities [12�].

Lighter drives enable animals to behave more naturally.

The lighter machinery can also be applied to smaller

animals such as mice and zebra finch [13��,14]. The

ability to record from mice during behavioral studies

has the advantage that neural recordings can be combined

with genetic manipulations.

Methodologies for online denoising of the signals from

non-neuronal noise arising from animal’s movement are

also being developed. These use the fact that such signals

tend to occur on all electrodes simultaneously and thus by

correlating signals over multiple electrodes one can get

rid of such noise [15].

Telemetry is yet another step in making the recording

gear less bulky, enabling animals to socially interact with

other animals [16] and explore 3D environments

[13��,17��].

Advances in the understanding and analysis
of extracellular signals
Many of the recent advances relate to the analysis of

extracellular signals. Given that synchronicity of neural

activity is of great interest one would like to be able to

detect events that occur simultaneously. Improved

solutions for this problem have recently been developed

[18], which also enable the online detection and sorting of

events under changing circumstances. Another challenge

is being able to verify that the recordings are stable and

that the same units are being recorded over long periods

of time. This is particularly important for following

changes in populations of neurons during learning. Pre-

viously, recording stability across days was claimed on the

basis of similarity between action potential waveforms

[19,20] or waveform features [21]. Recently statistical

frameworks were employed to calculate a confidence

measure for the signals being from the same neuron

[22,23��].
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The availability of high dimensional data also requires

analysis tools that enable extraction of high order inter-

action between the recorded units (for review see [24�]
and [25]).

Another direction is trying to extrapolate information on

intrinsic properties of the units from extracellular wave-

forms. To this end dual intracellular and extracellular

recordings were performed linking features of the extra-

cellular waveform to intrinsic properties of action poten-

tials [26]. From this study it was concluded that several

intracellular parameters can be deduced from extracellu-

lar spike waveforms. The width and amplitude of the

intracellular spike are reflected by distinct properties of

the extracellular waveform. Modeling studies try to

better understand the source of variability of the

extracellular signals. To that end, dual intracellular

and extracellular recordings were performed [27��].
Using the line source approximation method developed

by Holt and Koch [28] the extracellular waveforms at

different locations were calculated (Figure 1a) and com-

pared to the recorded extracellular waveforms (Figure 1b

solid and dotted line respectively). The extracellular and

intracellular action potential waveforms (Figure 1b and c

respectively dotted lines) were then used in order to tune

the densities and the kinetics of the modeled neuron

such that the recorded and simulated intracellular spikes

were similar (Figure 1c solid and dotted line respect-

ively). In Figure 1a are the simulated extracellular wave-

forms for one pyramidal neuron. From fitting such

models to experimental data it was observed that a large

variability in the intrinsic properties of the modeled

neurons was required. This indicates that variability in

the intrinsic properties of neurons is a key source for the

variability of the recorded waveforms [29]. As expected a

major source of variability is the location of the recording

electrode relative to the cell.

Juxtacellular recording and stimulation
Juxtacellular recording techniques have the significant

advantage over extracellular recordings in that the

recorded units can be stimulated and labeled [30]. Both

stimulation and labeling of the cells is achieved by

injecting currents through the pipette. Such currents

electroporate the membrane of the cell creating small

holes. Ions can then cross the membrane polarizing the

cell. If biocytin is included in the recording pipette then

these molecules will also enter the cell and label it.

Similar to conventional extracellular recording, this tech-

nique can be used in behaving animals [31�,32��,33].

Juxtacellular recordings present a great advantage over

intracellular and whole-cell recording techniques in

chronic preparations because juxtacellular recordings

are easy to apply and they do not require dura removal.

In vivo whole-cell recordings are typically limited to

relatively few recording sessions for a given cortical area

due to the deterioration of the exposure after dura
animals—going beyond spikes, Curr Opin Neurobiol (2009), doi:10.1016/j.conb.2009.08.005

www.sciencedirect.com

http://dx.doi.org/10.1016/j.conb.2009.08.005


Electrophysiology in behaving animals Chorev et al. 3

CONEUR-698; NO OF PAGES 7

Figure 1

Line source approximation method captures the waveform of extracellular spike. Dual intra and extra cellular recordings (b and c dotted lines,

respectively) were used for tuning the intracellular channel distributions and kinetics. The line source approximation method was used to calculate the

extracellular spike waveforms at different locations. The extracellular electrode is marked by a dashed black line the intracellular electrode is marked

by white lines (a). This method managed to capture both the intra (c) and extra cellular (b) properties of the action potential (dotted line averaged

recorded signal, solid line simulated waveform).Modified from [27��].
removal. The identification of neurons allows to correlate

the activity together with morphology connectivity and

other molecular markers that can be tested. Figure 2

shows an example of one such study [32��], which used

juxtacellular recording technique to correlate the firing

patterns of thalamic waking-active neurons (Figure 2bi

and 2bii bottom traces and Figure 2c), their morphology

(Figure 2a), expression of orexin (Figure 2a), and state of
Please cite this article in press as: Chorev E, et al. Electrophysiological recordings from behaving

Figure 2

Juxtacellular recording, staining and posthoc immunohistochemistry identifi

labeled biphasic broad and biphasic narrow thalamic waking-active neurons

shows also anti-orexin antibodies labeling. (b) EMG, EEG and unit recording

The unit results are summarized in (c).Modified from [32��]. SWS - slow wav
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the animal (i.e. animal awake or asleep and state of sleep)

(Figure 2bi and 2bii top two traces).

Using the stimulation advantage of juxtacellular meth-

odology it was shown that the initiation of just 15 spikes in

single cells can affect behavior [31�]. These results argue

for coding scheme in somatosensory cortex, in which few

neurons and a small number of spikes can lead to a
animals—going beyond spikes, Curr Opin Neurobiol (2009), doi:10.1016/j.conb.2009.08.005

cation of neurons related to the sleep–wake transitions. Neurobiotin

(a top and bottom panels respectively). The broad biphasic neuron

from biphasic broad (bi) and biphasic narrow waking-active neurons (bii).

e sleep.
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behavioral outcome. Similar conclusions were reached

using light stimulation of channelrhodopsin expressing

layer 2/3 somatosensory cells [34�].

Limitations

To date the main drawback of this technique compared to

other extracellular techniques is that it requires a precise

positioning of the electrode relative to the recorded

neuron, thus limiting the application of this technique

to very few cells. Especially in awake animals, the neces-

sity for the recording pipette to be in close proximity to

the recorded cell might result in perturbation of the cell

and in many cases limit the recording duration. This

problem also prevents chronic recordings from single

neurons. To date this technique was used in awake head

fixed animals but efforts are underway possible to adapt

this method for freely moving animals [35].

Advances

Identification and stimulation of neurons can be also

achieved by other means such as genetically targeting

specific cell types with activity inducing markers such as

channelrhodopsin [36]. This is of course limited to cells

that can be targeted and to locations where light can be

delivered. A major advantage of this method is the ability

to activate/inactivate specific cell groups and observe the

effect it exerts on behavior and activity of cells, thus

giving functional information on top of correlative infor-

mation. The juxtacellular method, on the contrary, allows

for controlled single cell stimulation, thus verifying a

functional relation of the recorded neuron activity to
Please cite this article in press as: Chorev E, et al. Electrophysiological recordings from behaving

Figure 3

Whole-cell recording of a hippocampal neuron in a freely moving animal. (to

pipette is ‘head-anchored’ cementing to post and to an acrylic implant. Havin

the recorded CA1 pyramidal neurons (bottom). (b) For the cell in (a), membra

around in a behavioral arena. AP shown at expanded timescale to the right.
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the task [31�,33]. Recently it was demonstrated that using

this technique one can also deliver plasmid DNA into the

recorded neuron. This allows to genetically manipulate

single neurons that are shown to effect behavior, enabling

to further dissect the mechanisms underlying single

neuron computations [37��].

Intracellular recording
Neuronal input–output relations cannot be deciphered

with extracellular recording techniques. Changes in fir-

ing patterns are usually attributed to changes in the

network but it is clear that such changes can also occur

due to changes within neurons. The only method to date

that can record inputs and outputs of the cell is intra-

cellular recording. This method is being used in awake

behaving experiments either in restrained [38] or freely

moving animals [39�,40,41]. This method has all the

advantages of the juxtacellular method: labeling of the

cell (Figure 3a) and ability to stimulate single cells. But

the information gained is much richer, including sub-

threshold events (Figure 3b top panel) as well as spiking

information (Figure 3a inset). These events include

synaptic potentials, plateau-potentials, calcium spikes

and spikelets, all of which can be document during

locomotion (Figure 3b bottom panel). Using this method

one can monitor changes in intrinsic properties of

neurons during different global states and in the course

of learning. This sort of data will be able to link the

knowledge on firing patterns of cells in behaving animals

to cellular mechanisms that usually are studied in in vitro
preparations.
animals—going beyond spikes, Curr Opin Neurobiol (2009), doi:10.1016/j.conb.2009.08.005

p) A schematic of the recording configuration, in which the recording

g biocytin in the recording pipette enabled to recover the morphology of

ne potential (top) during a period when the animal is awake and moving

Corresponding velocity of animal’s head (bottom).Modified from [39�].
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Limitations

The main limitation of the freely behaving intracellular

recording method is the low success rates. To reach such a

recording one must start with an anesthetized animal,

once a stable recording is achieved the electrode is

anchored to the skull, only then the animal can be

removed from the stereotax and given an antidote for

the anesthesia [39�,40]. The recordings are often lost in

the process of stabilization and during waking up of the

animals [39�,40]. The success rates can be higher using a

head restrained variation of the methodology. The

duration of recording is yet another limitation. The

recordings from freely moving animals are limited to

about 1 h of recording; usually the durations are much

shorter. This is both due to stability problems and to

washout of intracellular modulators and membranous

conductances, known to occur in whole-cell recordings.

This limits the scope of questions that can be studied

with this technique. The fact that this method is limited

to few cells is another drawback, especially since the

patching is blinded thus making it hard to select for

the desired cells. In principle, however, methods for

targeted patching [42–44] can be combined with this

method.

Advances

The advantages of intracellular recordings are quite

obvious, having the record of subthreshold activity of

neurons during behavior. This allows one to follow

ongoing changes in input patterns as well as changes in

intrinsic properties of neurons. For example, one can

understand what underlies the attenuation of responses

during awake active whisking as compared to non-whisk-

ing periods. According to Crochet and Peterson [41] this is

due to a combined effect of the neurons being in a

depolarized state during active whisking and to the

thalamic inputs being depressed. Advances are being

introduced to this relatively new method. Creative means

for using this method in restrained animals are also being

developed [45��]. The use of a floating ball allows for

walking without mobility [46,47], and combining this

with virtual reality [48–50] enables to simulate mobility

for the animal without really mobilizing it. The latest

development in this technique is the head anchoring

technique, which allows for higher success rates [39�]
and enable to get information on subthreshold activity in

freely moving animals during natural behaviour [51,52].

Conclusions
The brain generates behavior instantaneously and can

store experiences of single episodes in distributed net-

works. Most of what we know about the brain and its

plasticity, however, relates to repetitive stimuli and

plasticity in single synapses. Although we are virtually

ignorant of how the brain solves real life problems and

forms episodic memories, the methodological advances

reviewed here will help confront these problems. Moving
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from single unit recording to multiple unit recordings

allows one to extract more information about the stimuli

and about the outcome. Documenting and analyzing

neuronal responses of identified neurons will frame our

thinking in terms of activity of specific circuits rather than

stating our results in mere action potential counts.

Recording postsynaptic potentials in conscious animals

during tasks such as navigation will help to bridge the gap

between synaptic plasticity, learning and memory for-

mation.
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