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SUMMARY

Correlated neuronal activity is instrumental in
the formation of networks, but its emergence
during maturation is poorly understood. We
have used multibeam two-photon calcium mi-
croscopy combined with targeted electrophys-
iological recordings in order to determine the
development of population coherence from
embryonic to postnatal stages in the hippocam-
pus. At embryonic stages (E16–E19), synchro-
nized activity is absent, and neurons are
intrinsically active and generate L-type chan-
nel-mediated calcium spikes. At birth, small
cell assemblies coupled by gap junctions spon-
taneously generate synchronous nonsynaptic
calcium plateaus associated to recurrent burst
discharges. The emergence of coherent cal-
cium plateaus at birth is controlled by oxytocin,
a maternal hormone initiating labour, and pro-
gressively shut down a few days later by the
synapse-driven giant depolarizing potentials
(GDPs) that synchronize the entire network.
Therefore, in the developing hippocampus,
delivery is an important signal that triggers the
first coherent activity pattern, which is silenced
by the emergence of synaptic transmission.

INTRODUCTION

During brain maturation, networks shift from an ensemble

of cells endowed with sparse spontaneous activity to

a collection of neuronal microcircuits communicating by

means of thousands of synapses to generate complex

spike patterns that are behaviorally relevant. During this

process, emerging networks engage in a sequential mat-

uration of coordinated activity that is believed to control

the formation of region-specific synaptic connections

(Colin-Le Brun et al., 2004; Garaschuk et al., 2000; Kasya-

nov et al., 2004) as well as the organization and shaping of

sensory and motor systems (Cang et al., 2005; Kandler

and Gillespie, 2005; Katz and Shatz, 1996; Khazipov
et al., 2004). Initially restricted to pairs of neurons (Owens

and Kriegstein, 1998), correlated activity gets more com-

plex, involving larger ensembles of neurons as the network

matures and the density of functional synapses augments.

Spontaneous correlated neuronal activity clearly repre-

sents the hallmark of the developing brain since it has

been observed in a wide range of peripheral (Galli and

Maffei, 1988; Meister et al., 1991; O’Donovan, 1989;

Syed et al., 2004) and central (Ben Ari, 2001, 2002; Ben

Ari et al., 1989; Garaschuk et al., 2000; Kandler and

Katz, 1998; Owens and Kriegstein, 1998; Palva et al.,

2000; Yuste et al., 1992) structures.

In developing cortical structures, several patterns of

coherent activity have been described at different stages,

thus providing a general framework of network matura-

tion. At embryonic stages, locally coordinated calcium

events can be observed in migrating neurons (Owens

and Kriegstein, 1998). Later, spatially constrained

coordinated calcium activity synchronizes gap-junction-

connected neighboring neurons, independently from

synaptic transmission (Dupont et al., 2005; Kandler and

Katz, 1998; Owens and Kriegstein, 1998; Yuste et al.,

1992) or not (Corlew et al., 2004; Dupont et al., 2005).

However, they are rare events, and their study therefore

required the use of pharmacological manipulation to in-

duce them (high potassium, low magnesium, temperature

drop, activation of muscarinic receptors, etc.) (Dupont

et al., 2005; Kandler and Katz, 1998; Yuste et al., 1992).

Then, large groups of neighboring neurons engage in

synchronous network events by means of synaptic trans-

mission (Ben Ari, 2002; Ben Ari et al., 1989; Garaschuk

et al., 2000; Khazipov et al., 2001; McCabe et al., 2006;

Palva et al., 2000) as well as intrinsic voltage-gated

currents (Corlew et al., 2004; Sipila et al., 2005). This

universally observed widespread synchrony (Ben Ari,

2001) provides most of the activity during a restricted

time window of postnatal development (Ben Ari et al.,

1989; Corlew et al., 2004; Garaschuk et al., 2000)

before being replaced by behaviorally relevant oscillatory

patterns.

In spite of this considerable information, the maturation

of population coherence in the brain is not fully under-

stood. First, at the cellular level, the electrophysiological

correlates of nonsynaptic coherent activity patterns have

not been described. Second, it is not known whether
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Figure 1. Multibeam Two-Photon Imaging of the Three Dominant Forms of Primary Activity in the CA1 Region from Embryonic

Stages to First Postnatal Days

(A1) Two-photon calcium fluorescence images of the CA1 region from mouse hippocampal slices at E16, P1, and P6. Time resolution: 100 ms/frame.

For corresponding movies, see Movies S1 and S2. (A2) Automatically detected contours of the cells from the fluorescence images. Open contours

indicate silent cells. Black-filled contours indicate cells producing calcium spikes, red-filled contours are cells producing calcium plateaus (SPA cells),

and blue-filled contours are cells producing fast synchronous calcium transients (GDP events). Scale bars, 100 mm. (A3) Rasterplots of the activity

from the three movies illustrated in (A1) (control ACSF). Each row represents a single cell, and each horizontal line the duration of detected calcium

transients (see Experimental Procedures). (A4) Three populations of events can be distinguished as shown by their representative fluorescence traces

(black, calcium spikes; red, calcium plateaus, i.e., SPAs; blue, GDP events).

(B) Simultaneous current-clamp (Vrest ��60 mV, top) and optical recordings (bottom trace) in three representative neurons for the three types of

calcium activities described in (A). Bottom pictures are photomicrographs of the biocytin-filled neurons recorded above. Scale bars, 50 mm (left
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distinct coherent events such as localized and wide-

spread synchronous activities coexist and interact during

circuit maturation. It is also essential to determine whether

delivery and other pivotal biological developmental steps

control the evolution of network patterns. The aims of

the present study were therefore to investigate the

development of population coherence both at the network

and cellular levels within the same cortical network and

to determine its correlation with delivery and postnatal

maturation.

We have determined in detail the maturation of corre-

lated activity in the developing hippocampus, a region

where the maturation of GABA and glutamate receptors

and synapse-driven patterns have been extensively de-

scribed (Ben Ari, 2002). We used a quantitative approach

that enabled us to record the activity of a large number of

identified neurons in order to determine their contribution

to correlated activities without an a priori assumption. Fast

multibeam two-photon calcium microscopy (Nielsen et al.,

2001) combined with targeted electrophysiological re-

cordings was implemented here for the first time (to our

knowledge). We recorded the activity of large networks

with a cellular resolution that allows the detection of dis-

crete coherent patterns and identified their cellular corre-

lates (Cossart et al., 2003). We report that, at embryonic

stages, neurons are intrinsically active and sporadically

generate voltage-gated calcium spikes. Around birth, a

remarkable coordinated activity pattern emerges: small

groups of intrinsically active neurons couple by gap junc-

tions and generate synchronous, nonsynaptic calcium

plateaus. Such coherent calcium activity is produced by

sustained periods of recurrent burst discharges (<1 Hz,

for tens of seconds) dependent on the activation of L-

type calcium and sodium channels and on the cationic

current Ih. Since we observed the emergence of popula-

tion coherence at birth, we hypothesized that it is related

to parturition and in particular to oxytocin. This maternal

hormone, released during delivery (Gimpl and Fahrenholz,

2001) and which easily reaches the fetus (Malek et al.,

1996), was recently shown to induce a transient excit-

atory-to-inhibitory switch in GABA actions in the fetal brain

shortly before delivery (Tyzio et al., 2006). Accordingly, we

demonstrate that the first coherent activity pattern domi-

nating the hippocampal network at birth is boosted up

by oxytocin. Furthermore, we establish that similar mech-

anisms underlie the near-term enhancement of population

coherence and the oxytocin-mediated switch in GABA

signaling. The handover of network synchrony from local

nonsynaptic to widespread synapse-driven activities

(GDPs) occurs progressively during the first postnatal

week, since both dynamics coexist during a critical pe-

riod. Blocking GDPs reinstates the synchronous primitive

nonsynaptic burst discharges, suggesting that both

events are mutually exclusive. Thus, delivery triggers the
first coherent activity in gap-junction-coupled cell assem-

blies in the form of calcium plateaus nesting nonsynaptic

burst discharges. This primitive pattern is shut off by the

emergence of synaptic transmission.

RESULTS

To acquire a dynamic and quantitative estimate of the

activity of a large number of neurons, we used large-scale

two-photon calcium microscopy in mouse hippocampal

slices (Cossart et al., 2003, 2005). Since the major limita-

tion of imaging techniques is time resolution, we have

used a novel system based on multibeam scanning of

the preparation, which achieves millisecond resolution

and reliably detects single action potentials. We recorded

movies of spontaneous activity in slices of mouse hippo-

campus aged between E16 and P14 and focused on the

CA1 region (field size: 430 3 380 mm2; 135�560 cells, av-

erage: 274 cells per movie; 76,107 neurons recorded in to-

tal). Analysis was performed online using custom software

to measure fluorescence changes in each hippocampal

cell and mark the onset and offset of individual calcium

transients (Figure 1; see also Experimental Procedures).

We then combined calcium transients from all cells into

raster plots indicating the activity of each imaged cell as

a function of time (Figure 1).

With this compound approach, we determined the num-

ber of neurons participating in a given network pattern and

described their temporal and spatial links. Neurons in-

volved in the generation of network activities were tar-

geted for whole-cell recordings to determine the physio-

logical properties underlying such events (Figure 1).

Recorded neurons were filled with dyes for post hoc mor-

phological identification (Figure 1).

Population Coherence Emerges at Birth

in Developing Hippocampal Neurons

We first determined the patterns of activity most repre-

sented at three sequential developmental stages using

calcium imaging and targeted current-clamp recordings

from active neurons: embryo (E16–E19), around birth

(P0–P2), and postnatal (P6–P10). Spontaneous calcium

events were sorted both manually and automatically

based on their kinetics, blindly to the experimental condi-

tion (see Experimental Procedures). We found three suc-

cessive dominant types of calcium dynamics:

(1) At embryonic stages (E16–E19), only a minority of

cells were active (21% ± 1%, n = 11 slices, 3832

cells). All activity consisted of sporadic brief calcium

events (2.95 ± 0.04 s duration, n = 7000 events,

Figures 1 and 2) that were poorly correlated be-

tween neurons (0.54% cell pairs significantly corre-

lated, see Experimental Procedures). Current-clamp
and middle), 100 mm (right). (B1) Black, calcium spikes recorded in a neuron at E16. (B2) Red, SPA recorded in a neuron at P0. Note that biocytin-filling

of a single cell (*) results in the labeling of groups of neurons. (B3) Blue, GDP; labeled cell is a typical CA1 pyramidal neuron. HP, hippocampal plate; IZ,

intermediate zone; MZ, marginal zone; O, stratum oriens; P, stratum pyramidale; R, stratum radiatum.
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Neuron

Parturition-Associated Coherent Activity Patterns
recordings from active neurons revealed that

these calcium events corresponded to immature

membrane-potential spikes (Figure 1). We will refer

to these early calcium events as calcium spikes.

(2) Around birth (P0–P2), more cells generated calcium

spikes (see Movie S1 in the Supplemental Data

available online), but another pattern appeared in

about 20% of active cells consisting of long-lasting

calcium plateaus (duration: 9.1 ± 0.1 s, 0.02 Hz,

n = 5893 events, significantly different from calcium

spikes in terms of duration, Kolmogorov-Smirnov,

p < 0.001; Figures 1 and 2). These plateaus pro-

duced recurrent burst discharges when cells were

recorded at Vrest, as shown by targeted whole-

cell recordings (Vm = �61 ± 1 mV, DV = 12 ±

4 mV, 0.5 ± 0.2 Hz, n = 12 cells, Figures 1 and 4).

In contrast to calcium spikes, the onsets of calcium

plateaus were significantly synchronized between

neurons within a 200 ms time window (7.8% pairs

of calcium plateaus correlated versus 1.3% cal-

cium spikes pairs, p < 0.05, Figures 6 and 8). On

average, synchronous calcium plateaus involved

3.0 ± 0.2 neurons; per movie, the largest synchro-

nous events comprised 7.4 ± 1.9 neurons (n = 11

slices, 384 cells producing plateaus). Synchronous

events occurred on average 7 ± 1 times per min (n =

11 slices). The synchronous occurrence of calcium

plateaus in a subpopulation of neurons represents

the first coherent activity pattern in the hippocam-

pus. We propose to refer to this primary coherent

activity, characterized by the occurrence of syn-

chronous calcium plateaus in neuronal assemblies

as SPA (synchronous plateau assemblies).

(3) At later postnatal stages (P6–P10), a majority of

cells (64% ± 4%) were active in a strongly coordi-

nated manner (21.1% pairs significantly correlated,

peaks of synchronous activation involving up to

80% of imaged cells, n = 30 slices, p < 0.05; Fig-

ure 1, see Movie S2). This activity corresponds to

the well-described GDPs (Ben Ari et al., 1989), as

revealed by current-clamp recordings (Figure 1)

and by their blockade by GABAA and glutamate

receptor antagonists (Figure 3).

We conclude that three patterns, differing both by their

calcium dynamics and their electrophysiological corre-

lates, dominate early spontaneous activity in the CA1 re-

gion: uncorrelated isolated spikes, synchronized calcium

plateaus nesting recurrent burst discharges (SPAs), and

a pattern corresponding to the synapse-driven GDPs.

The developmental incidence of calcium spikes, SPAs,

and GDPs also differed: uncorrelated spikes were the

dominant pattern at embryonic stages (E16–E19) and

was then progressively replaced by SPAs and GDPs that

prevailed by the end of the first postnatal week (Figure 2).

Both SPAs and GDPs disappear after the second postna-

tal week (Figure 2). Therefore, population coherence

emerges at birth in the hippocampus in the transient
108 Neuron 54, 105–120, April 5, 2007 ª2007 Elsevier Inc.
form of SPAs involving bursting neuronal assemblies.

We next investigated the cellular mechanisms responsible

for the generation of the two dominating patterns from E16

until birth, calcium spikes and SPAs.

Intrinsic Voltage-Gated Ionic Conductances

Generate Calcium Spikes and SPAs

Sporadic calcium spikes were intrinsically generated by

high-threshold calcium conductances with a contribution

of sodium channels since (1) L-type calcium (10 mM

nifedipine) and sodium (1 mM TTX) channel antagonists

Figure 2. Dynamics and Developmental Features of the Three

Dominant Forms of Primary Activity in the CA1 Region

(A1) Distribution plot of the durations of calcium transients for the three

types of primary activities reveals three distinct populations (Kolmo-

gorov-Smirnov, p < 0.001). (A2) Representative calcium fluorescence

traces for calcium spikes, two and three measured in neurons from dif-

ferent movies. Note that first two and bottom three highly synchronized

GDP traces are from the same movie.

(B) Graph indicates the fraction of calcium-spike cells (black), SPA cells

(red) relative to the number of active cells, as well as the frequency of

GDPs (blue), for six successive age groups. Error bars indicate SEMs.
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Figure 3. Pharmacological Properties of the Three Dominant Forms of Primary Activity in the CA1 Hippocampus

(A) Representative histograms showing the percentage of imaged cells that are detected as being active (active cells [%]) at each movie frame from

E16 to P6 (time resolution: 100 ms). Peaks of activity in the network are GDPs. There is a clear increase in the amplitude (i.e., fraction of cells coactive

at peaks of synchrony) and in the frequency of GDPs. Filled contours mark cells detected as being active at least once during the recording time cor-

responding to the above histograms. Note that whereas synchrony dramatically increases between P1 and P6, the fraction of active cells is compa-

rable. In contrast, very few neurons are active at E16.

(B) Representative rasterplots of calcium event duration recorded at E16 (embryo, black), P0 (birth, red), and P6 (postnatal, blue) in control (top), in the

presence of blockers for glutamatergic and GABAergic transmission (middle, see Experimental Procedures), and in the presence of voltage-depen-

dent sodium and L-type calcium channel (VDC) blockers (bottom, 1 mM TTX and 10 mM nifedipine). Histograms show the averaged fraction of imaged

cells detected as active at least once in a movie frame in the three different pharmacological conditions for the three age groups (E16–E19, black), (P0–

P2, red), and (P6–P10, blue). Note that histograms in the presence of blockers are expressed relative to control activities. Error bars indicate SEMs.
strongly reduced these events (Figure 3). Before birth

(E16–E19), the fraction of active cells displaying calcium

spikes, ‘‘fraction of calcium-spike cells,’’ was reduced

by nifedipine (10 mM) alone to 22% ± 10% of control; fur-

ther addition of TTX reduced the fraction of calcium-spike

cells to 15% ± 4% of control (n = 7 slices, 2058 cells, Fig-

ure 3). At later stages (P3–P10), both nifedipine and TTX

were required to reduce the fraction of calcium-spike cells

to 11% ± 1% of control (n = 7 slices, 1476 cells, Figure 3).

Interestingly, the T-type calcium channel antagonist
(30 mM nickel) failed to suppress calcium spikes (fraction

of calcium-spike cells was 115% ± 41% of control, n = 2

slices, 536 cells, not shown). (2) The fraction of calcium-

spike cells was not affected by blocking synaptic trans-

mission using GABAA-, AMPA-, and NMDA-receptor

antagonists (antagonist cocktail #1: 10 mM bicuculline,

10 mM NBQX, 40 mM D-APV, 108% ± 16% of control,

n = 11, Figure 3); subsequent addition of GABAB (5 mM

CGP 55845), metabotropic glutamate (group I, 100 mM

AIDA; group II/III, 100 mM CPPG), and muscarinic (10 mM
Neuron 54, 105–120, April 5, 2007 ª2007 Elsevier Inc. 109



Neuron

Parturition-Associated Coherent Activity Patterns
Figure 4. Voltage Dependence of the Membrane-Potential Fluctuations Produced during Calcium Plateaus

(A) Current-clamp recordings at different membrane potentials of a cell detected optically as producing calcium plateaus (SPAs). Note that the

SPA activity is disturbed at potential values above �55 and below �65 mV. Cell was recorded at P3 in the presence of AMPA/kainate, NMDA,

and GABAA-R blockers.

(B) Bar histograms indicate the fraction of imaged cells detected as active at least once during the recording period (active cells [%]) in elevated po-

tassium conditions (8 mM) relative to control conditions (i.e., in the presence of glutamate and GABAA-R blockers). Black bar, fraction of intrinsically

active cells, i.e., all cells active; red, fraction of active cells producing a calcium plateau (i.e., fraction of SPA cells). Error bars indicate SEMs.

(C) Histograms show the percentage of imaged cells that are detected as being active at each movie frame in control (same conditions as [B], top) and

in 8 mM K+ (bottom). Red-filled contours in the maps of the imaged slice indicate SPA cells. Fluorescence traces show the calcium events in the three

marked contours in both conditions. Note that all SPA cells stopped producing calcium plateaus in 8 mM K+ (bottom).

(D) Simultaneous current-clamp recordings (Vrest ��60 mV, top traces) and calcium imaging (bottom trace) of spontaneous activity in high-potas-

sium conditions and in the presence of glutamate and GABAA-R blockers.
atropine) receptor antagonists also failed to block calcium

spikes (fraction of calcium-spike cells in the presence of

antagonist cocktail #2: 101% ± 7% of control, n = 4 slices,

902 cells, not shown).

SPAs are nonsynaptic voltage-gated events since (1)

targeted current-clamp recordings from neurons produc-

ing SPAs revealed a strong voltage dependence of these

events that were abolished when the cell was hyperpolar-

ized (to Vm ��80 mV) or depolarized (to Vm ��40 mV;

Figure 4). In keeping with this, raising—in the presence

of ionotropic GABA- and glutamate-receptor antago-

nists—the extracellular potassium concentration from

3.5 to 8 mM to depolarize neurons (from �61 ± 1 mV to

�44 ± 1 mV, respectively, n = 4 neurons) produced a highly

significant drop of the fraction of active cells producing

calcium plateaus, i.e., ‘‘fraction of SPA-cells’’ (to 26% ±

4% of control n = 5 slices, 1122 cells imaged, Figure 4,

p < 0.001); (2) targeted whole-cell recordings showed

that recurrent membrane-potential bursts were associ-

ated with sodium action potentials but also occurred in

very immature neurons with poorly developed sodium

conductances, suggesting that pure calcium currents
110 Neuron 54, 105–120, April 5, 2007 ª2007 Elsevier Inc.
could generate them. Accordingly, SPAs were sensitive

to antagonists of L-type calcium and sodium channels

(10 mM nifedipine and 1 mM TTX, reduction of the fraction

of SPA cells to 6% ± 2% of control, n = 7 slices, 1476 cells,

Figure 3), indicating that they were generated by high-

threshold calcium currents with a contribution of sodium

channels. (3) Like calcium spikes, the fraction of SPA cells

was not affected by perfusion with antagonist cocktails #1

and #2 that included GABA, glutamate, and muscarinic re-

ceptor blockers (antagonist cocktail #2: 90% ± 12%, n = 4

slices, 902 cells). These cocktails also did not affect signif-

icantly the coherence between calcium plateaus (5.5%

pairs of SPA cells correlated in blockers versus 7.8% pairs

in control). In the presence of antagonist cocktail #1, we

also performed voltage-clamp recordings from SPA cells

(n = 3, Vh = �60 mV). In this condition, we did not observe

any recurrent burst pattern in contrast to recordings per-

formed in current-clamp mode (data not shown). There-

fore, neither the generation nor the synchronization of

SPAs was synapse-mediated. (4) Finally, we tested the in-

volvement of Ih in the generation of SPA since this current

is known to contribute significantly to the pacemaker



Neuron

Parturition-Associated Coherent Activity Patterns
mechanisms underlying rhythmic oscillations (Pape,

1996) and is functionally expressed in the hippocampus

at early developmental stages (Brewster et al., 2006).

The fraction of SPA cells was strongly reduced by

ZD7288 (30 mM, to 14% ± 6% of control, n = 4 movies,

769 cells, Figure 5) or Cs (1 mM to 31% ± 4% of control,

n = 3 movies, 571 cells). This effect was specific for

SPAs since the fraction of calcium-spike cells was not af-

fected by Ih blockade (94% ± 4% or 126% ± 8% of control

in the presence of 30 mM ZD7288 or 1 mM Cs, respec-

tively). Current-clamp recordings confirmed that SPA cells

indeed expressed functional HCN channels as assessed

by hyperpolarizing current injections (Figure 5), the block-

Figure 5. Role of Ih in the Generation of Calcium Plateaus

(A) All cells detected in control conditions (i.e., in the presence of

AMPA/kainate, NMDA, and GABAA-R blockers) as generating cal-

cium plateaus (SPA cells, red-filled contours) only generated calcium

spikes (calcium-spike cells, black-filled contours) when the specific

blocker for the hyperpolarization-activated cationic current (ZD7288,

30 mM) was added to the saline. Traces below show the calcium fluo-

rescence changes in the three cells indicated on the above contour

maps.

(B) Simultaneous electrophysiological (current-clamp, Vrest��60 mV)

and optical recording of an SPA cell in control (same conditions as [A])

and in the presence of ZD7288.

(C) The h-conductance activated by a hyperpolarizing step in control

conditions in a neuron at birth (Vrest) is fully blocked in the presence

of ZD7288.
ade of which prevented recurrent membrane-potential

oscillations and induced a slight hyperpolarization of the

cell (�5 mV, Figure 5, n = 3). Interestingly, T-type calcium

currents, also frequently involved in the generation of

rhythmic oscillations (McCormick and Huguenard, 1992),

were not contributing to SPAs, since the fraction of SPA

cells was not affected by low concentrations of nickel

(30 mM, to 125% ± 37% of control, n = 2 slices, 536 cells).

In conclusion, calcium spikes and SPAs, the two early pat-

terns of activity preceding the occurrence of GDPs, are

mediated by intrinsic voltage-gated channels, Ih being

specifically instrumental in generating SPAs but not cal-

cium spikes. Since SPA cells represented the first neuro-

nal ensemble operating as a network at a stage where

most activity is intrinsic in isolated neurons, we next spe-

cifically examined the mechanisms controlling their syn-

chronization.

SPAs Are Restricted to a Subnetwork of Gap

Junction-Interconnected Neurons

Imaging of calcium dynamics clearly indicated that SPAs

differ from calcium spikes and GDPs, not only by their

unique kinetics but also by their being synchronized (un-

like calcium spikes) and restricted to a small ensemble

of neurons (unlike GDPs). Furthermore, such synchroniza-

tion was robust, since coherence of activity among SPA

cells persisted in the absence of synaptic transmission

and since repeated synchronous activation of groups

of SPA neurons could be observed (see for example

Figure 8B). Since developing neurons are often connected

by gap junctions (Bittman et al., 1997; Borodinsky et al.,

2004; Corlew et al., 2004; Dupont et al., 2005; Lo Turco

and Kriegstein, 1991; Owens and Kriegstein, 1998; Roerig

and Feller, 2000; Sohl et al., 2005; Spitzer et al., 2004;

Yuste et al., 1992), we tested the hypothesis that electrical

synapses could selectively enable the generation of non-

synaptic coherent SPAs in subnetworks of interconnected

neurons. Bath applications of the specific gap-junction

blockers mefloquine (Cruikshank et al., 2004) (25 mM, Fig-

ure 6) or carbenoxolone (100 mM) selectively blocked the

occurrence of SPAs (fraction of SPA cells was 9% ± 4%,

n = 6 slices and 26% ± 5%, n = 5 slices of control in the

presence of mefloquine or carbenoxolone, respectively).

This effect was specific for SPAs, since the fraction of

calcium-spike cells was not affected by gap-junction

blockers (75% ± 4% or 101% ± 27% of control in the

presence of 25 mM mefloquine or 100 mM carbenoxolone,

respectively). In keeping with this, we confirmed in a sepa-

rate set of experiments by electrophysiological recordings

that 25 mM mefloquine or 100 mM carbenoxolone did not

affect calcium spikes (data not shown). As a result of

blocking SPAs, correlated network activity dropped to

the chance level observed for calcium spikes (0.52% pairs

of SPA cells correlated in mefloquine, p < 0.05). In order to

further establish the selective coupling by gap junctions

between SPA cells, we injected intracellularly the coupling

tracer neurobiotin or biocytin (Peinado et al., 1993) while

imaging calcium activity in order to discriminate between
Neuron 54, 105–120, April 5, 2007 ª2007 Elsevier Inc. 111
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Figure 6. Calcium Plateaus Are Tempo-

rally Correlated and Selectively Affected

by Gap Junction Blockers

(A) Representative histograms indicating the

fraction of cells detected as being active for

each movie frame relative to (left, black) the en-

tire population of imaged cells and (right, red) to

the subpopulation of SPA cells, i.e., cells pro-

ducing characteristic calcium plateaus. Histo-

grams show that early (illustrated example is

P0) there is no emergent correlated activity

but that the subpopulation of SPA cells syn-

chronize their activity (asterisk). Lower-right

fluorescence traces illustrate coactivation of

five SPA cells (red-filled contours and red

dots in the calcium fluorescence image).

(B) Representative example illustrating the ef-

fect of the gap-junction blocker mefloquine

(25 mM) on nonsynaptic activity (i.e., in the pres-

ence of NBQX [10 mM], D-APV [40 mM], and

bicuculline [10 mM]) at P2. Cells presenting cal-

cium plateaus such as #i (arrow #i in the con-

tour maps) are indicated by filled red contours

whereas other intrinsically active cells such as

#ii (arrow #ii in contour maps) are indicated by

filled black contours. Mefloquine selectively af-

fects calcium plateaus, as shown in the activity

rasterplots and by the almost complete disap-

pearance of filled red contours in the presence

of the blocker (right panel) and by the changes

in fluorescence traces between #i and #ii.
cells generating calcium spikes and SPAs. We found that

neurobiotin or biocytin injection resulted in dye-labeling of

clusters of neurons only in cells identified by imaging

and electrophysiological recordings as generating SPA

(100%, n = 7 cells recorded in seven slices, Figure S1,

see also Figure 1B). In contrast, cells identified by imaging

and electrophysiological recordings as generating cal-

cium spikes but not SPAs, were not gap-junction con-

nected to other neurons, as neurobiotin or biocytin injec-

tion resulted in dye-labeling of the recorded neuron only

(in 12 out of 15 recorded cells from 15 slices, Figure S1).

Therefore, SPAs are generated in cell assemblies that

are gap-junction coupled in contrast to calcium spikes.

We conclude that, during the perinatal period, a subnet-

work of intrinsically active neurons assembles to generate,

via gap-junction coupling, synchronized recurrent bursts

that form the earliest endogenous pattern of correlated

activity in the hippocampus. Because the maximum per-
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centage of SPA cells was observed around birth, we

next investigated whether SPAs could be regulated by

delivery-associated mechanisms.

Delivery Triggers the Emergence of Population

Coherence

We hypothesized that if parturition plays a role in the emer-

gence of the first coherent pattern generated by the devel-

oping hippocampus, it should be regulated by signaling

molecules involved in delivery. We therefore tested the ef-

fects of oxytocin (OT), an essential maternal hormone for

labor induction (Gimpl and Fahrenholz, 2001). Treatment

with oxytocin (1 mM) of slices from mice fetuses (E18) hav-

ing been initially intracardially perfused with ACSF to wash

out the endogeneous hormone caused a 3-fold increase in

the fraction of SPA cells to levels comparable to birth

stages (21% ± 2% of SPA cells at E18 in the presence

of OT versus 9% ± 2% of SPA cells in control at E18,



Neuron

Parturition-Associated Coherent Activity Patterns
Figure 7. The Generation of Calcium Plateaus Is Regulated by Oxytocin

(A1) Histograms compare the averaged fraction of active cells producing a calcium plateau (fraction of SPA cells) at embryonic stages (E18) and at

birth (P0) in control conditions (white bar), in the presence of oxytocin (OT 1 mM, red bar, n = 6 movies) and in the presence of the OT-receptor an-

tagonist atosiban (1–5 mM, black bar, n = 8 movies). Error bars indicate SEMs, *p < 0.001. (A2) An important fraction of cells detected in control con-

ditions as generating calcium spikes (black-filled contours) generate calcium plateaus (SPA cells, filled red contours) when OT is added to the saline,

as shown in the illustrated contour map for a representative movie taken at embryonic stages (E18). Traces below show the calcium fluorescence

changes in the two calcium-spike cells indicated on the above contour maps. They become SPA cells in the presence of OT.

(B1) Left histograms represent the fraction of SPA cells in the presence of the GABAA-R blocker (bicuculline 10 mM) relative to control conditions (i.e.,

10 mM NBQX and 40 mM D-APV). Note that the fraction of SPA cells is significantly boosted when blocking GABAA-Rs at E18 and P2–P3 (*p < 0.05)

while it remains unchanged at birth (P0, p > 0.05). Right histograms show that adding the selective NKCC1 antagonist bumetanide (10 mM, red bar) at

embryonic stages (E18) selectively increases the fraction of SPA cells relative to the total number of active cells as compared to control conditions

(white bar, *p < 0.01). Error bars indicate SEMs. (B2) An important fraction of cells detected in control conditions as generating calcium spikes (black-

filled contours) generate calcium plateaus (SPA cells, filled red contours) when bumetanide (10 mM) is added to the saline, as shown in the illustrated

contour maps for a representative movie taken at embryonic stages (E18). Traces below show the calcium fluorescence changes in the two neurons

indicated in the above maps (1 and 2) that generate calcium spikes and that become SPA cells in the presence of bumetanide.
n = 15 movies, 5348 cells, p < 0.001, Figure 7). In contrast,

the fraction of active cells relative to the total number of

imaged neurons was not affected by the hormone (active

cells: 45% ± 6% at E18 control versus 56% ± 4% at E18 in

OT; n = 15 movies, 5348 cells, p > 0.05). Furthermore, in-

tracardial perfusion of newborn mice, just at the time of

delivery, with the selective oxytocin receptor antagonist

atosiban (1 to 5 mM) prevented the emergence of SPA ac-

tivity, since the fraction of SPA cells at birth in perfused sli-

ces dropped to levels comparable to embryonic stages

(7% ± 1% of SPA cells at P0 in the presence of atosiban

versus 18% ± 2% of SPA cells at P0 in control, n = 23

movies, 7147 cells, p < 0.001, Figure 7). In contrast, atosi-

ban did not change the fraction of active cells relative to

the total number of imaged neurons at P0 (active cells:

46% ± 6% at P0 control versus 52% ± 7% at P0 in atosi-
ban; n = 23 movies, 7147 cells, p > 0.05). Therefore, we

conclude that the emergence of SPAs is controlled by

oxytocin and thus that it is a parturition-associated coher-

ent activity pattern.

We next asked for the possible cellular mechanisms in-

volved in the oxytocin-mediated enhancement of SPAs.

Since oxytocin was recently shown to transiently convert

GABA actions from excitatory to inhibitory by a downregu-

lation of the NKCC1 chloride inward transporter activity

(Tyzio et al., 2006), we hypothesized that the polarity of

GABA actions could directly influence the occurrence

of SPAs. We first investigated the near-term impact of

GABAA-receptor activation on the generation of SPA.

We found that pharmacological blockade of GABAA-Rs

almost doubled the fraction of SPA cells relative to con-

trol conditions (NBQX 10 mM + D-APV 40 mM) both at
Neuron 54, 105–120, April 5, 2007 ª2007 Elsevier Inc. 113
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Figure 8. Modulation of SPAs by Synap-

tic Activities

(A1) Graph shows that the fraction of active

cells producing a calcium plateau (SPA cells

[%]) increases as synaptic activity is reduced

by blockers of ionotropic glutamate receptors

(10 mM NBQX, 40 mM D-APV) and when GABAA

receptors are further blocked by bicuculline

(10 mM) for the age groups E18 and P2–P10.

+p < 0.05 when comparing fraction of SPA cells

in control and glutamate-receptor blockers;

*p < 0.05 when comparing fraction of SPA cells

in glutamate-receptor blockers and glutamate-

and GABAA-receptor blockers. Error bars indi-

cate SEMs. (A2) Representative contour maps

of the effect of synaptic blockers on the distri-

bution of SPA cells (filled red contours) on the

same slice at a stage when GDPs dominate

the network (P6). Blue-filled contours indicate

cells that participate in GDPs without produc-

ing SPA. Black-filled contours indicate cells

generating only calcium spikes. Scale bar,

100 mm.

(B1) SPA is anticorrelated with the occurrence

of GDPs in the network, as shown by the histo-

grams plotting the fraction of cells detected as

being active for each movie frame relative to

the entire population of imaged cells (top,

blue) and to the subpopulation of SPA cells,

i.e., cells producing characteristic calcium pla-

teaus (bottom, red). Peaks in the number of co-

active neurons in the blue histogram (*) corre-

spond to GDPs. (B2) Calcium fluorescence

changes in four SPA cells corresponding to

the above recording. Note that the four SPA

cells can participate to the GDP events. (B3)

Expanded timescale of the activity recorded

in (B1) and (B2). Histogram indicates GDPs

and fluorescence trace the occurrence of a cal-

cium plateau in an SPA cell. Bold dotted lines

mark GDPs that turn ON/OFF the calcium plateau, whereas light dotted lines mark GDPs that do not affect the plateau (but that can be detected

on the top of the plateau). (B4) Pooled data plot for 95 movies showing the fraction of active cells within a 6 s interval centered at the onset (left)

and the offset (right) of calcium plateaus in control conditions (black) as well as in the presence of glutamate-receptor blockers (Experimental Pro-

cedures, gray). Error bars represent SEMs.
embryonic stages and a few days after birth (E18: 183% ±

11% of control, n = 5 slices, 1660 cells; P2–P3: 192% ±

29%, n = 7 slices, 2054 cells; p < 0.05, Figure 7, see

also Figure 8) while it did not significantly affect the frac-

tion of SPA cells at the time of delivery (P0: 126% ±

13% of control, n = 8 slices, 2672 cells). This suggested

that GABA inhibits the emergence of SPAs when it has

an excitatory action. Accordingly, we show that the appli-

cation of the selective NKCC1 antagonist bumetanide

(10 mM) at embryonic stages (E18) selectively increases the

fraction of SPA cells (9% ± 2% SPA cells in control versus

23% ± 1% in bumetanide, n = 19 movies, 5303 cells, p <

0.01, Figure 7) without affecting the fraction of active cells

in the network, thus reproducing the effects of oxytocin.

We conclude that the oxytocin-mediated transient

inhibitory action of GABA occurring at birth favors the

emergence of SPA.
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SPAs and GDPs Are Temporally and Spatially

Mutually Exclusive

Although SPAs and GDPs have different developmental

profiles, they do coexist within the same neuronal network

during the first postnatal week. To investigate their inter-

actions, we first determined their precise developmental

curves, then their spatiotemporal interactions.

We first calculated the fraction of SPA cells at E16 (n = 5

slices), E18–E19 (n = 15), P0–P2 (n = 20), P3–P5 (n = 14),

P6–P10 (n = 13), and P14 (n = 6). We found that the devel-

opmental decline of SPAs, which started at P0–P2, was

clearly anticorrelated with the progressive expansion of

GDPs that peaked at P6–P10 (Figure 2). Since GABAergic

and glutamatergic synapses, which mediate GDPs, ma-

ture progressively during the same period, we determined

the effects of blocking GABA and/or glutamate synapses

on the developmental expression of SPAs. We found
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that blocking both GABAA and glutamate ionotropic re-

ceptors restored SPAs during the first postnatal week, but

not after P14 (or before E19, Figure 8), suggesting that

synapse-driven events inhibit the expression of SPAs.

Interestingly, in keeping with the earlier maturation of

GABAergic transmission (Ben Ari, 2001), blockade of

glutamate receptors alone failed to increase significantly

the fraction of SPA cells at birth (P0–P2) but efficiently

rescued the fraction of SPA cells starting from P3–P5

(Figure 8). These results suggest that GABA-driven then

glutamate-driven synaptic events can switch off SPAs in

keeping with their maturation gradients. They also suggest

that the critical period during which the immature network

is capable of returning to gap-junction-synchronized cal-

cium plateaus ends around the second postnatal week.

When GDPs and SPAs coexist within the hippocampal

network (P3–P7), they are mutually exclusive. We marked

the onset and offset of each calcium plateau (SPA) and av-

eraged activity time-locked to these two time references.

SPAs were strongly regulated by the occurrence of GDPs

in a temporal and spatial manner. We observed a signifi-

cant peak of network synchrony at the onset and just be-

fore the offset of SPAs (Figure 8). Both peaks of synchrony

corresponded to the occurrence of a GDP since they were

blocked when synaptic transmission was suppressed.

Results indicated that SPAs tended to turn ON at GDP

offset and turn OFF at the onset of a subsequent GDP

(Figure 8). In addition, since we could localize neurons

involved in any given GDP, we compared the spatial distri-

bution of GDP events that turned OFF SPAs to GDPs that

did not alter SPAs. Most SPA cells, besides from generat-

ing calcium plateaus, also participated to GDPs (see ex-

amples in Figure 8B). Moreover, we found that, on aver-

age, a GDP that shut off a calcium plateau involved

more cells within a 20 mm radius from the cell generating

an SPA than an ineffective one (24% ± 3% neurons versus

14% ± 0.7% p < 0.05). Therefore, GDPs effectively influ-

ence the generation of SPAs when they occur in their vi-

cinity. We propose that the synaptic influx during a GDP

interferes with SPAs by switching them OFF.

DISCUSSION

The combined use of fast multibeam two-photon imaging

to analyze calcium dynamics from hundreds of neurons

and of targeted electrophysiological recordings has en-

abled us to follow a cascade of three patterns represent-

ing the transition from an ensemble of neurons at embry-

onic stages (E16) endowed with sparse and uncorrelated

activities to a neuronal network communicating by means

of thousands of synapses and generating the massively

synchronized GDPs (P5–P10). To our knowledge, this is

the first time that the dynamics of three distinct spontane-

ous activity patterns are followed simultaneously from em-

bryo to juvenile stages within the same cortical network.

We propose that the emergence of population coherence

in the CA1 hippocampus is controlled by the physiological

changes taking place during delivery and disappears
when the synaptic circuitry is capable of generating

GDPs. Since excellent reviews of the maturation of retinal

waves (Firth et al., 2005) and spinal cord oscillations (Spit-

zer et al., 2004) are available, we shall restrict our discus-

sion to cortical structures.

Cellular Mechanisms for the Generation of SPAs

At embryonic stages, hippocampal neurons generate fast

intrinsic calcium events (mean duration < 3 s) that do not

propagate to other neurons. These events seem to occur

randomly, on average twice a minute, with no intercellular

synchrony. Current-clamp recordings indicated that they

corresponded to spontaneous calcium spikes. Since

they occurred in only 10% of cells at E16, they are most

likely the first sign of electrical activity of the immature hip-

pocampus. These primitive calcium spikes seem to indis-

tinctively concern all neuronal types in the network. Similar

single-cell calcium events have been reported in the ven-

tricular zone at late embryonic stages (Owens and Krieg-

stein, 1998; Weissman et al., 2004) and in spinal neurons

(Gu and Spitzer, 1995; Gu and Spitzer, 1997), although

less frequent and with ten times longer kinetics. Further-

more, calcium fluctuations in cortical precursor cells do

not involve voltage-gated calcium channels in contrast

to these spikes that required both sodium and calcium

voltage-gated conductances for their generation. A strong

contribution of L-type calcium channels to their generation

is indicated by the fact that the L-type antagonist nifedi-

pine abolished almost all calcium activity before birth. In-

terestingly, a similar critical role for L-type channels at

early developmental stages has been reported in other

structures (Corlew et al., 2004; Liljelund et al., 2000; Singer

et al., 2001). Neither gap junctions nor transmitter-gated

channels are involved in the generation of these sporadic

individual events, since they are resistant to both ligand-

gated channels and gap-junction antagonists.

A discrete group of neurons (around 20% of active cells)

later coassemble and generate synchronized calcium pla-

teaus nesting recurrent membrane-potential oscillations.

Although both SPAs and calcium spikes involve sodium

and calcium voltage-gated conductances and are neither

synapse-driven nor metabotropic-receptor dependent,

they are generated by different mechanisms. In contrast

to calcium spikes, SPAs require the activation of the hy-

perpolarization-activated cationic current Ih, since they

were fully and selectively blocked by ZD7288 or external

Cs. Immunohistochemical studies indicate that several

HCN isoforms (in particular HCN-4) are already expressed

at birth in the CA1 region (Brewster et al., 2006; Vasilyev

and Barish, 2002). An upregulation of Ih at birth mirroring

the emergence of SPAs has been described in phrenic

motoneurons (Di et al., 2001). We confirm that an H-con-

ductance can be activated in hippocampal neurons at

this stage. Interestingly, there is a transient hyperpolariza-

tion of the resting membrane potential of hippocampal

neurons at birth (Tyzio et al., 2003, 2006) that should facil-

itate the activation of Ih and the generation of oscillatory

activity. Ih is instrumental in the generation of many central
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patterns that occur within the same frequency range

(<1 Hz) (Bender et al., 2005; Blethyn et al., 2006; Nita

et al., 2003; Pape and McCormick, 1989). The generation

of SPAs is also conditioned by gap-junction coupling be-

tween a restricted assembly of intrinsically active neurons

since (1) blockade of gap junctions selectively prevents

the occurrence of calcium plateaus without affecting the

electrical properties of neurons, including the generation

of voltage-gated calcium currents (data not shown) or of

calcium spikes. (2) Intracellular dye injection from targeted

cells producing SPAs resulted in the labeling of cell clus-

ters, whereas similar experiments in neurons producing

calcium spikes resulted in single-cell labeling. It remains

to be determined how electrical coupling can produce

membrane potential recurrent oscillations (Leznik and Lli-

nas, 2005). It is a complex issue since it concerns the

mechanisms for an emergent network property, and mod-

eling studies should help provide some clues (Loewen-

stein et al., 2001).

There is an abundant literature on the early maturation

of gap junctions and the importance of intracellular cou-

pling as a communication system in developing structures

in various animal species (Rozental et al., 2000). Gap-

junction coupling supports biochemical communication

(Kandler and Katz, 1998; Yuste et al., 1992, 1995), medi-

ates the spread of membrane depolarization or of calcium

signals (Corlew et al., 2004; Dupont et al., 2005; Katz and

Shatz, 1996; Liljelund et al., 2000; Lo Turco and Kriegstein,

1991; Owens and Kriegstein, 1998; Singer et al., 2001),

and may influence the cellular expression of the conduc-

tances mediating Ih (Schulz et al., 2006). It is worth stress-

ing that, in contrast to earlier studies (Corlew et al., 2004;

Dupont et al., 2005), pharmacological blockade of gap

junctions selectively blocks synchronization-dependent

events (SPAs), whereas ongoing intrinsic calcium spikes

are not affected. This and other observations suggest

that SPAs and earlier intrinsic calcium spikes coexist dur-

ing a transitional period. Therefore, at embryonic stages,

neurons first fire calcium spikes individually before inter-

connecting via gap junctions at birth to generate the first

coherent pattern of activity (SPA).

SPA: A Specific Coherent Pattern Synchronizing

Small Cell Assemblies

SPAs correspond to the synchronous activation of dis-

crete neuronal assemblies that remain coactive for several

seconds. Although they share some features with other

immature cortical activities (vide supra), they are different

from GDPs (Leinekugel et al., 1998), early network oscilla-

tions (Corlew et al., 2004; Garaschuk et al., 2000; McCabe

et al., 2006; Meister et al., 1991), cholinergic cortical oscil-

lations (Dupont et al., 2005; Peinado, 2000), intracellular

calcium fluctuations in precursor cells (Owens and Krieg-

stein, 1998), or cortical domains (Kandler and Katz, 1998;

Yuste et al., 1992) since:

(1) SPAs have unique calcium dynamics with fast on-

set kinetics lasting less than 200 ms. The kinetics
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of the calcium plateaus is slow and results in a ro-

bust and sustained calcium influx as opposed to

synapse-driven early network events (Garaschuk

et al., 2000; Leinekugel et al., 1997). The duration

of the plateau is comparable to that of the sponta-

neous calcium fluctuations reported in the ventric-

ular zone (Owens and Kriegstein, 1998) or in cul-

tured Purkinje neurons (Liljelund et al., 2000). The

temporal structure of the membrane-potential fluc-

tuations occurring during SPAs is also remarkable,

since SPA neurons oscillate relatively fast (at

around 0.5 Hz), suggesting they might represent

a pacemaker ensemble. The comparison with ear-

lier studies performed in immature cortical struc-

tures regarding this point is difficult, since most of

these investigations focused on calcium activity,

sometimes associated to field-potential recordings

(Corlew et al., 2004; Dupont et al., 2005; Garaschuk

et al., 2000), but only very few have performed sin-

gle-cell electrophysiological recordings to identify

the underlying physiological events while imaging

(Leinekugel et al., 1997; Liljelund et al., 2000; Pei-

nado, 2000).

(2) SPAs are nonsynaptic events that are not blocked

by antagonists of ligand-gated channels in contrast

to cortical oscillations (Dupont et al., 2005; Gara-

schuk et al., 2000; McCabe et al., 2006; Peinado,

2000).

(3) SPAs are blocked by global neuronal depolariza-

tion in elevated extracellular potassium conditions

as opposed to many coherent immature activities

(Corlew et al., 2004; Garaschuk et al., 2000; Sipila

et al., 2005; Yuste et al., 1992). This and other ob-

servations indicate that the generation of SPAs is

mediated by voltage-gated signaling with no inter-

vention of synaptic currents.

(4) SPAs are confined spatially and temporally to a re-

stricted population of neurons. They do not propa-

gate, thus resembling a ‘‘chord’’ (see Movie S1)

rather than a ‘‘wave’’ (see Movie S2). Their temporal

and spatial confinement to a small cell assembly

coupled by gap junctions suggests a sort of syncy-

tium generating calcium plateaus. In that respect,

they can be compared to cortical domains (Owens

and Kriegstein, 1998; Yuste et al., 1995) but differ

from other reported cortical waves that propagate

to the entire cortical mantle (Dupont et al., 2005).

They also have a more restricted spatial coherence

than most immature neuronal patterns that also

synchronize large groups of neighboring neurons

(Bittman et al., 1997; Garaschuk et al., 2000; Leine-

kugel et al., 1997; Wong et al., 1993).

Possible Significance of the Developmental

Curve of Expression of SPAs

The three developmental curves described here clearly

provide a signature for the different coherent electrical
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activity patterns prevailing at three developmental stages:

embryonic, parturition, and postnatal. Our results show

that SPAs present a unique bell-shaped developmental

profile centered at birth. Interestingly, other coherent

activity patterns with a frequency peaking around birth

have been previously described in immature cortical

structures (Corlew et al., 2004; Garaschuk et al., 2000).

We provide here evidence that, in the hippocampus, deliv-

ery actually phases the emergence of population coher-

ence. Indeed, we show that the shift from individual

calcium spikes to SPAs is raised by maternal hormones

released during delivery. Thus, early oxytocin application

to fetuses shifted the peak of the developmental curve

for the emergence of SPAs to embryonic stages, whereas

birth application of the selective oxytocin-receptor antag-

onist on the contrary delayed the expression of SPAs.

Oxytocin was shown to exert multiple effects in the ner-

vous system (Argiolas and Gessa, 1991; Raggenbass,

2001; Theodosis et al., 2006; Tomizawa et al., 2003). In

particular, during delivery, maternal oxytocin triggers ma-

jor changes in fetal neurons by modulating intracellular

chloride concentration via a downregulation of the KCC1

transporter activity acting directly on oxytocin receptors

(Tyzio et al., 2006). We show that the same pathways

involved in the oxytocin-mediated transient shift of the ac-

tions of GABA from excitation to inhibition (Tyzio et al.,

2006) also control the emergence of SPAs at birth. Several

mechanisms could explain such enhancement of intrinsic

calcium plateaus. For example, a hyperpolarizing action of

GABA may favor the activation of Ih or create suitable and

stable membrane-potential conditions for the generation

of voltage-dependent membrane-potential oscillations.

Besides, since a depolarizing GABA action increased

intracellular calcium levels (Tyzio et al., 2006) and given

that gap-junction coupling is negatively modulated by cal-

cium (Arumugam et al., 2005; Connors and Long, 2004),

another possibility could be that oxytocin indirectly favors

SPAs via an action on gap junctions. A G protein signaling

cascade involving cyclic nucleotide-dependent pathways

(Gimpl and Fahrenholz, 2001) could also be involved,

given their positive modulation of gap-junction coupling

(Connors and Long, 2004; Hatton and Yang, 1996).

Finally, our imaging approach has enabled a compari-

son of three patterns that cohabitate after birth: SPAs

and GDPs. We found a strong ON/OFF relationship

between SPAs and GDPs. Indeed, we show that GDPs

synchronize both a neuronal network operating through

synaptic connections and, at their offset, subnetworks of

immature neurons producing SPAs. Therefore, GDPs

constitute another synchronizing mechanism for calcium

plateaus that may reinforce the specificity of the calcium

message associated with SPAs and perhaps provide a sig-

nal for shutting them off through synaptic currents. Sev-

eral mechanisms could underlie the functional ‘‘inhibition’’

of SPAs by GDPs. It is possible that the strong depolariza-

tion of the membrane potential during GDPs directly

affects the stability of voltage-dependent membrane

oscillations as revealed by the sensitivity of SPAs to mem-
brane potential during recordings. In the long range,

activation of NMDA receptors during GDPs (Leinekugel

et al., 1997) could produce a downregulation of connexin

expression as previously established in hypothalamic

neurons (Arumugam et al., 2005).

Conclusions and Possible Functions of SPAs

Using fast dynamic calcium imaging, we found an inter-

mediate step in the maturation of network activities

emerging at birth and during which small neuronal assem-

blies generate calcium plateaus nesting membrane-po-

tential bursts (SPAs). Several observations suggest that

sustained elevations of intracellular calcium concentration

at preferential frequencies encode a specific trigger signal

to pathways regulating gene transcription (Dolmetsch

et al., 1997; Gu and Spitzer, 1995). We thus propose that

the calcium plateaus associated with SPAs provide a spe-

cific signal for phenotypic or other functional specifica-

tions through the activation of a set of genes (Borodinsky

et al., 2004; Gu and Spitzer, 1995; Jiang and Swann, 2005;

Redmond and Ghosh, 2005; Sohl et al., 2005; Spitzer

et al., 2004) or induce the diffusion of a messenger mole-

cule between the cells making up this inaugural microcir-

cuit. SPAs could thus provide a mechanism to reinforce

the initial sorting of phenotypes according to their spatio-

temporal origins (Butt et al., 2005). The assemblies of neu-

rons formed may constitute an early form of functional unit

preceding the organization by synaptic activity of cortical

columns and other types of functional entities (Donoghue

and Rakic, 1999).

EXPERIMENTAL PROCEDURES

Slice Preparation and Two-Photon Imaging

Transverse hippocampal slices (300 mm thick) were prepared from E16

to 14-day-old (P15) Swiss mice, using a Microm tissue slicer (Interna-

tional GmbH, Germany) with ice-cold oxygenated modified artificial

cerebrospinal fluid (mACSF), with 0.5 mM CaCl2 and 7 mM MgSO4,

and in which NaCl was replaced by an equimolar concentration of cho-

line. Slices were then transferred for rest (around 1 hr) in oxygenated

normal ACSF containing (in mM): 126 NaCl, 3.5 KCl, 1.2 NaH2PO4,

26 NaHCO3, 1.3 MgCl2, 2.0 CaCl2, and 10 D-glucose, pH 7.4. For

AM-loading, slices were incubated in a small vial containing 2.5 ml of

oxygenated ACSF with 25 ml of a 1 mM Fura2-a.m. solution (Molecular

Probes; in 100% DMSO) for 20–30 min. Slices were incubated in the

dark, and the incubation solution was maintained at 35�C–37�C. Ex-

periments were performed at 30�C–32�C with normal ACSF and con-

tinuously aerated with 95% O2/5% CO2. Imaging was performed with

a multibeam two-photon laser scanning system (Trimscope-LaVision

Biotec, Germany) coupled to an Olympus microscope. This system

is based on a patented beamsplitter that splits up the incoming femto-

second laser beam (provided by a Ti:Sapphire laser source, Chame-

leon, Coherent, USA, excitation wavelength: 780 nm) into 64 beamlets,

which are scanned simultaneously (scan rate 1 KHz) in the slice. This

results in 64 times higher image acquisition rates compared to conven-

tional multiphoton scanning microscopes. Images were acquired

through a CCD camera (La Vision Imager 3QE), which typically resulted

in a time resolution of 100 ms for full frames corresponding to the read-

out time of the camera. Slices were imaged using a low-magnification,

high numerical aperture objective (203, NA-0.95, Olympus). The size

of the imaged field was typically�430 3 380 mm2 ; 2 3 2 binning, pixel

size: 600 nm.
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Pharmacology

Antagonists for GABAA and glutamate receptors mentioned in the

manuscript are bicuculline (10 mM), NBQX (10 mM), and D-APV

(40 mM). All drugs except TTX (Tocris) were purchased from Sigma.

Electrophysiology

Cells were held in current clamp using a patch-clamp amplifier (HEKA,

EPC10). Pipette solution contained 130 mM KMethylSO4, 5 mM KCl,

5 mM NaCl, 10 mM HEPES, 2.5 mM Mg-ATP, 0.3 mM GTP, 30 mM

of Fura-2 pentapotassium salt (Molecular Probes), and 0.5% biocytin

or 0.5% neurobiotin for post hoc reconstruction of recorded neurons

and identification of cells interconnected via gap junctions. The osmo-

larity was 265–275 mOsm, pH 7.3. Microelectrodes had a resistance of

4–8 MU. Recordings were digitized online (20 kHz) with a Labmaster

interface card (Molecular Devices) to a personal computer and ac-

quired using Axoscope 7.0 software (Molecular Devices). To exclude

possible interference with the calcium dye, neurons at P0–P1 were

also patch clamped blindly (n = 23) without dye loading. In these con-

ditions, we found that 22% of neurons displayed spontaneous recur-

rent burst discharges (DV = 16 ± 3 mV, n = 5 cells, data not shown)

when neurons where recorded at resting membrane potential (�64 ±

1 mV, n = 5 cells).

Analysis

Analysis was performed with custom-made software in Matlab (Math-

Works, Natick, MA). We developed a program aimed at the automatic

identification of loaded hippocampal cells and at measuring their fluo-

rescence as a function of time. This program is an improved version of

the previously designed software for cortical slice analysis (Cossart

et al., 2003). We encountered two major problems for an automatic

identification of cells in an image: (1) variations in background fluores-

cence, which precluded the use of a uniform threshold value through-

out the image and (2) the inability of a simple thresholding procedure to

separate nearby cells. The latter problem was especially severe in the

dense pyramidal cell layer of the hippocampus. As before (Cossart

et al., 2003), we solved the problem of background variations by nor-

malizing each pixel by the average fluorescence in its vicinity. We also

convolved the image with a two-dimensional Gaussian (s = 6 mm),

which emphasized circular neuronal shapes and partially separated

nearby neurons. A threshold (usually top 10 percentile of the overall

pixel fluorescence distribution) was applied to the image to separate

cell contours from the background. In order to complete the separation

of nearby cells, we measured a circularity threshold for every contour,

defined as c = P2/(4A), where P is the perimeter and A is the area of

a contour. High values of c (usually >4) identified highly noncircular

shapes usually indicative on unseparated cell contours. Local fluores-

cence maxima were identified within such contours, and the contours

were separated into a corresponding number of concave shapes. All

image processing was performed on time averages of recorded

movies. The calcium signal of each cell was the average fluorescence

within the contour of that cell, measured as a function of time. The anal-

ysis was performed separately for each hippocampal layer, with the

borders between layers drawn manually. The entire procedure could

be performed online sufficiently quickly to identify cells for targeted

patch-clamp recordings. Signal-processing algorithms of MiniAnalysis

software (Synaptosoft, Decatur, GA) were used to detect the onsets

and offsets (time of half-amplitude decay) of calcium signals within

the traces of individual cells. Active cells are neurons exhibiting at least

one calcium event within the period of recording.

To compute the activity correlation of two cells, the onset of each

event was represented by a Gaussian (s = 1 frame, to allow some jit-

ter). The inner product of the resulting values was then calculated.

The significance of each correlation value was estimated by direct

comparison with a distribution computed from surrogate data sets,

in which the events were randomly reshuffled in time.

To discriminate between calcium plateaus (SPAs), and calcium tran-

sients (calcium spikes or GDPs), we visually sorted these activities
118 Neuron 54, 105–120, April 5, 2007 ª2007 Elsevier Inc.
based on the presence or absence of a calcium plateau. The charac-

teristic feature of a calcium plateau is that it sustains a calcium level

for several frames as opposed to a calcium spike, which starts decay-

ing at the peak. We therefore considered that all events that stayed

within �5% of their peak amplitude for more than �500 ms corre-

sponded to calcium plateaus. Whereas SPAs had a clear plateau fol-

lowed by decay, calcium spikes and GDPs had the decay in calcium

fluorescence immediately following the increase (Figure 2). Manual

analysis was done blindly to the experimental condition. We also per-

formed a fully automated analysis of a sample of our data with criteria

similar to that used for visual inspection: calcium plateaus are events

with a peak amplitude of 20% DF/F persisting for at least 30 frames

(>4 s). Such automated analysis gave typical errors of less than 3%

from manual analysis (n = 12 movies reanalyzed).

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/54/1/105/DC1/.
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A., Ben-Ari, Y., and Khazipov, R. (2006). Maternal oxytocin triggers

a transient inhibitory switch in GABA signaling in the fetal brain during

delivery. Science 314, 1788–1792.

Vasilyev, D.V., and Barish, M.E. (2002). Postnatal development of the

hyperpolarization-activated excitatory current Ih in mouse hippocam-

pal pyramidal neurons. J. Neurosci. 22, 8992–9004.

Weissman, T.A., Riquelme, P.A., Ivic, L., Flint, A.C., and Kriegstein,

A.R. (2004). Calcium waves propagate through radial glial cells and

modulate proliferation in the developing neocortex. Neuron 43, 647–

661.

Wong, R.O., Meister, M., and Shatz, C.J. (1993). Transient period of

correlated bursting activity during development of the mammalian

retina. Neuron 11, 923–938.

Yuste, R., Peinado, A., and Katz, L.C. (1992). Neuronal domains in

developing neocortex. Science 257, 665–669.

Yuste, R., Nelson, D.A., Rubin, W.W., and Katz, L.C. (1995). Neuronal

domains in developing neocortex: mechanisms of coactivation.

Neuron 14, 7–17.


	A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus
	Introduction
	Results
	Population Coherence Emerges at Birth in Developing Hippocampal Neurons
	Intrinsic Voltage-Gated Ionic Conductances Generate Calcium Spikes and SPAs
	SPAs Are Restricted to a Subnetwork of Gap Junction-Interconnected Neurons
	Delivery Triggers the Emergence of Population Coherence
	SPAs and GDPs Are Temporally and Spatially Mutually Exclusive

	Discussion
	Cellular Mechanisms for the Generation of SPAs
	SPA: A Specific Coherent Pattern Synchronizing Small Cell Assemblies
	Possible Significance of the Developmental Curve of Expression of SPAs
	Conclusions and Possible Functions of SPAs

	Experimental Procedures
	Slice Preparation and Two-Photon Imaging
	Pharmacology
	Electrophysiology
	Analysis

	Supplemental Data
	Acknowledgments
	Reference


