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Rapid progress in understanding the molecular basis of

neurodegeneration has been tightly linked with recent

discoveries in the field of programmed cell death (PCD).

Analysis of PCD in neuronal demise has led to

identification of several associated phenomena, such

as re-initiation of the cell cycle and the key role of

oxidative stress, although putative causal relationships

between these events are still debatable. These issues

are reviewed here in the context of acute and chronic

neurodegenerative processes. In addition, newly emer-

ging concepts concerning cell-cycle re-initiation are

discussed in terms of their potential impact on the

development of more effective therapeutic strategies.

Introduction

Neurons in the adult nervous system are terminally
differentiated, postmitotic cells. This state implies two
major physiological features: downregulation of mech-
anisms controlling cell division [1] and upregulation of
those offering protection from programmed cell death
(PCD), especially apoptosis [2]. Under pathological
conditions such as acute and chronic cytotoxic insults
associated with oxidative stress, these adaptations are
lost, leading to re-entry into the cell cycle before death
[3]. Neurons are highly sensitive to mediators of
oxidative stress such as reactive oxygen species
(ROS), which are well-known triggers of PCD
(reviewed in [4]). It is also well established that
several human neurodegenerative pathologies, includ-
ing stroke, Alzheimer’s disease (AD) and Parkinson’s
disease (PD) are accompanied by elevated
oxidative stress and neuronal loss, including PCD
(reviewed in [5]).
Programmed cell death

PCD is generally defined as a series of stereotypical
biochemical and morphological alterations leading to cell
demise. These characteristics are often employed to
distinguish the ‘active’ character of PCD, by which dying
cells are removed in a safe, non-inflammatory manner,
from ‘passive’ cell death by necrosis [2]. Under physiologi-
cal conditions, PCD is tightly controlled and regulates the
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balance between proliferation and differentiation both in
the course of development and during the optimization of
adult cell and tissue functions [6]. Alterations in the
regulation of PCD have been implicated in several
pathologies including cancer and neurodegeneration [2].

There is currently no consensus on the classification of
different types of PCD. One of the more restraining (but
currently considered one of the most accurate [6])
classifications is based on the criterion of nuclear
morphology. This approach divides PCD into classical
apoptosis, apoptosis-like PCD and necrosis-like PCD,
respectively characterized by nuclear chromatin conden-
sation that is ‘crescent-like’ (type 2), partial or peripheral
(type 1), or absent [2,6,7] (Figure 1). In this regard, the
concept of ‘apoptosis’ has enabled tremendous progress in
our understanding of PCD, but its widespread use as
synonymous to PCD has turned out to be confusing and
thus counter-productive [2,6].

Classical apoptosis, the best-known phenotypic
expression of PCD, consists of at least two phases:
initiation and execution. These ultimately lead to a series
of stereotypic morphological and biochemical events
resulting from the activation of cystein-dependent,
aspartate-directed proteases called caspases. The canoni-
cal pathways of caspase activation during initiation
include the ‘death-receptor-mediated’ recruitment of
procaspase-2, procaspase-8 and procaspase-10, and a
‘mitochondrial’ pathway through which caspase-9 is
activated via release of cytochrome c. The two pathways
converge, leading to activation of procaspase-3 and,
further downstream, to activation of caspase-6 and
caspase-7. All these pathways are associated with
activation of caspase-activated DNase (CAD), and so also
with ‘typical’ inter-nucleosomal DNA fragmentation
(reviewed in [8]) (Figure 1).

Apoptosis-like PCD is broader than classical apoptosis
and includes caspase-independent mitochondrial path-
ways. In this context, the apoptosis-inducing factor (AIF)
has attracted much interest because it is the best-known
caspase-independent cell death effector [9,10]. Upon
mitochondrial outer-membrane permeabilization, AIF is
released from the inter-membrane mitochondrial space
and translocates to the nucleus where it is associated with
large-scale DNA fragmentation [9]. Given the absence of
intrinsic AIF-endonuclease activity, the DNA-degrading
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Figure 1. Classification and molecular events leading to major types of PCD. The presented classification is based on nuclear morphology, as proposed by Jäättelä and

Tschopp [7]. PCD can be divided in three types: (a) classical apoptosis (featuring ‘crescent-like’ chromatin condensation), (b) apoptosis-like PCD (featuring partial and

peripheral chromatin condensation) and (c) necrosis-like PCD (featuring no primary chromatin condensation). (a) Classical apoptosis encompasses two pathways, both

coupled to a caspase cascade ultimately leading to activation of executive caspases including caspase-3, caspase-6 and caspase-7. These bring about internucleosomal DNA

lysis by the endonuclease caspase-activated DNase (CAD), yielding fragments that are multiples of 180–200 bp. Depending on the stimulus or cells involved, the apoptotic

response is mediated by an ‘extrinsic’ pathway following activation of caspase-8 by a death receptor, or an ‘intrinsic’ pathway involving apoptosis-inducing mitochondrial

proteins such as cytochrome c. Cytochrome c is released in the cytosol after permeabilization of the outer mitochondrial membrane and subsequently associates with

procaspase-9 and the adaptor protein apoptotic activating factor-1 (Apaf-1) to form a complex called the apoptosome. This complex gives rise to active caspase-9, which has

been implicated in stimulation of executive caspases. (b) Apoptosis-like PCD is mediated by mitochondrial effectors such as the apoptosis-inducing factor (AIF). Nuclear DNA

damage is detected by poly-ADP-ribose polymerase-1 (PARP-1) and signalled directly or indirectly to mitochondria via an unknown mechanism. This leads to AIF release and

its translocation to the nucleus, which is then associated with chromatin condensation and large-scale DNA fragmentation (O50 kbp). AIF, by itself, does not have

endonuclease catalytic activity. Hence, its DNA-degrading capacity requires association with endonucleases such as cyclophilin A in mammalian cells. (c) Necrosis-like PCD is

not as well understood. Despite this, the existence of at least two forms of such PCD has recently been proposed. Both forms display cytoplasmic vacuoles, albeit with distinct

morphologies. Paraptosis, which can be triggered by the activation of the insulin-like growth factor 1 receptor (IGFIR) via the mitogen-activated protein kinase (MAPK)

pathway [including extracellular-signal-regulated kinase (ERK)1, ERK2 and ERK kinase (MEK)2, and probably MEK4, MEK7 and c-Jun N-terminal kinase (JNK)1], is

accompanied by the formation of large, apparently empty vacuoles and can be selectively inhibited by the ALG-2-linked protein X (Alix) [74]. The other form of necrotic cell

death, ‘autophagic degeneration’, is mediated by the activation of mutated Ras. This death is associated with the formation of cytoplasmic, lysosome-derived vacuoles with

their characteristic double-membrane appearance [75].
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capacity of AIF relies on recruitment of downstream
nucleases, such as cyclophilin A [11] and, at least in
Caenorhabditis elegans, endonuclease G [12] (Figure 1).

In necrosis-like PCD, the cell-death program is
triggered by organelles other than mitochondria, such
as lysosomes, endoplasmic reticulum and the nucleus,
and by proteases other than caspases, such as cathepsins
and calpains originating from lysosomes and the endo-
plasmic reticulum, respectively (reviewed in [2,6,7])
(Figure 1). The molecular mechanisms underlying such
PCD are less well understood, although it is generally
believed that they represent ‘alternative’ death pathways
www.sciencedirect.com
when caspases are inhibited (reviewed in [2,7]). Caspase
inhibition can result from genetic factors such as
mutation of apoptotic activating factor 1 (Apaf-1) [13],
blockade by other proteases activated simultaneously
[14], silencing by viral proteins in the course of infection
(reviewed in [15]), energy depletion [16], and nitrative
and/or oxidative stress [17]. Neurons are highly sensitive
to the nitrative and oxidative stress because they depend
entirely on the aerobic metabolism of glucose, which
generates ROS as by-products of incomplete oxygen
reduction to water during oxidative phosphorylation
(reviewed in [4,5]).
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PCD in neurons

Classical apoptosis is the most prevalent form of PCD
during developmental neurogenesis. In the adult brain, it
remains the most studied form, although it does not
account for all death phenotypes. The involvement of
classical apoptosis remains controversial for normal brain
aging [18,19], in contrast to acute injuries [20] and chronic
diseases [21]. In PD, classical apoptosis is associated with
either mutation [22] or overexpression [23] of a-synuclein.
Similarly, the occurrence of classical apoptosis has been
reported in AD [24] and might be related to maturation of
amyloid-precursor protein (APP). Indeed, different types
of amyloid-b (Ab) peptides and activated caspase-3
accumulate in the hippocampus and frontal cortex in AD
[19]. It has also been reported that Ab peptides can
trigger the classical apoptotic program through a p53-
dependent mechanism [25], and direct transcriptional
control of the p53 promoter by Ab peptides has recently
been demonstrated [26].

As already discussed, it is now clear that forms of cell
death different from classical apoptosis commonly occur in
postmitotic neurons. These include canonical, ‘passive’
necrosis in addition to caspase-independent, non-apopto-
tic PCD. For example, the relevance of apoptosis-like PCD
in PD has recently been reported on the basis of the
capacity of MPPC to activate calpain I in a caspase-
independent manner, subsequently triggering AIF trans-
location to the nucleus [27]. MPPC is a metabolically
active product of 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyrimidine (MPTP), a toxin commonly used to induce
PD-like neurodegeneration. In AD, the involvement of
PCD distinct from classical apoptosis has been suggested
on the basis of morphological studies of AD brains [28],
animal models [29] and cell cultures treated with Ab
peptides [30]. The first direct evidence for involvement of
AIF-mediated apoptosis-like PCD in AD came from a
recent study demonstrating that Ab peptides trigger
nuclear AIF translocation in cultured embryonic rat
cerebral cortex [31]. Finally, some dying neurons display
a wide range of ‘atypical’ death morphologies [32,33]
considered as necrosis-like types of PCD according to the
classification of Jäättelä and Tschopp [7].

Oxidative stress as a trigger of neuronal PCD

ROS production inherent to oxidative stress is generally
associated with neuronal PCD, irrespective of the death
phenotype involved. ROS are harmful to proteins, lipids
and DNA because of their ability to oxidize these cellular
components and induce their structural and functional
alteration. Under physiological conditions, ROS are
rapidly cleared in scavenging reactions by antioxidant
enzymes such as superoxide dismutase (SOD) [34],
catalase [35], glutathione-reductase and glutathione-
peroxidase [36] and the recently discovered peroxiredox-
ins [37]. Dysregulation of ROS scavenging capacity
following glutamate excitotoxicity and Ab-induced cyto-
toxicity have been implicated in acute brain injuries and
chronic neurodegeneration, respectively [5,38].

Glutamate excitotoxicity is considered as an initial trigger
for apoptosis-like PCD in stroke, epileptic seizures, and
traumatic brain and spinal cord injuries (reviewed in [38]).
www.sciencedirect.com
Indeed, superoxide-anion scavenging by exogenous gluta-
thione peroxidase, which decreases oxidative stress, can
attenuate glutamatergic injury [39]. Glutamate excitotoxi-
city is mediated mainly through NMDA receptors, and the
NMDA-receptor antagonist MK-801 substantially decreases
cell death both in vivo [40] and in vitro [41]. Activation of
NMDA receptors leads to increased intracellular Ca2C

concentration and subsequent activation of enzymes such
as neuronal nitric oxide synthase (nNOS). Nitric oxide is a
substrate for the production of ROS (peroxynitrites), which
are responsible for protein nitration (reviewed in [42]).
Increased intracellular Ca2C concentration also triggers
depolarization of the mitochondrial membrane and the
subsequent loss of membrane potential (Dfm), yielding to
additional ROS generation [43]. DNA damage resulting from
ROS production triggers over-stimulation of the DNA
damage-sensing enzyme poly-ADP-ribose polymerase-1
(PARP-1), followed by AIF translocation from mitochondria
to the nucleus [44]. This translocation is PARP-1-dependent
because it is abolished in PARP-1-knockout mice, and it
precedes caspase-independent neuronal demise that has
characteristics of apoptosis-like PCD [45].

Some studies have reported that the initial release of
AIF from mitochondria requires caspase activation,
suggesting a parallel induction of both caspase-dependent
(classical apoptosis) and caspase-independent (AIF-
mediated) cell death, at least in non-neuronal cell types
[46]. However, the relevance of classical apoptosis in acute
neuronal injuries has been seriously challenged by the
recent demonstration that glutamate-induced excitotoxi-
city is caspase-independent [47]. Indeed, reduced AIF
expression enables cortical neurons in vitro to resist
glutamate-induced excitotoxic death, and protects the
hippocampus in vivo from damage associated with kainic-
acid-induced seizures [47]. Taken together, these data
strongly suggest that AIF is the key effector of cell death
occurring in acute neuronal injuries. However, it is also
apparent that multiple death phenotypes can be triggered
by the same stimulus in a timely ordered manner within a
given brain region. For example, Young et al. have shown
that the initial wave of cell loss observed in acute injuries
involves ‘excitotoxic cell death’ [48] – an expression used
by the authors in the sense of necrosis-like PCD, as
defined in [7]. The second wave of neuronal demise
involves classical apoptosis of neurons that have lost
their synaptic targets in the first wave [48].

The relevance of oxidative stress and the role of
excitotoxicity in chronic neurodegenerative processes are
now broadly recognized. The predominant view is that in
chronic neurodegeneration, glutamate excitotoxicity rep-
resents an important proximal regulator of neuronal
death, although the original triggers of ROS accumulation
are probably additional pathogenic factors [49]. These
include a mutated form of SOD1 in amyotrophic lateral
sclerosis (ALS) that increases the sensitivity of motoneur-
ons to glutamate excitotoxicity by a mechanism involving
oxidative stress [50]. Furthermore, oxidative-stress-
related protein modifications such as lipid peroxidation
and protein nitration have been reported in ALS patients
and in relevant animal models [51].
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Similar oxidative-stress-mediated lipid and protein
modifications have been reported to occur in the sub-
stantia nigra in PD [52]. The molecular mechanisms
involved have recently been investigated in the MPTP-
treated mouse model. In wild-type mice, but not in PARP-
1-knockout MPTP-treated mice, AIF translocates to the
nucleus of tyrosine-hydroxylase-positive neurons, demon-
strating that the cytotoxic effects of MPTP involve PARP-1
[53]. Wang et al. postulated that MPPC blocks complex I
of the mitochondrial respiratory chain, consequently
inhibiting oxidative phosphorylation and leading to a
decrease in intracellular ATP levels. This event is
indirectly involved in neuronal depolarization, release of
glutamate and over-stimulation of NMDA receptors,
resulting in increased intracellular Ca2C levels. The
following cascade of events is analogous to that reported
in acute injuries [53]. However, in light of the recent
finding that AIF is a key factor in regulation of complex I
assembly and/or maintenance [54], inhibition of this
complex by MPPC could perturb oxidoreduction by
affecting the capacity of AIF to regulate the complex. It
remains to be established whether, by itself, this signal is
sufficient to trigger the release of AIF from mitochondria.

Further clues concerning the relevance of AIF in
oxidative stress and chronic neurodegeneration came
from study of Harlequin mutant mice, which present a
dramatic reduction (w80%) in AIF expression owing to
ectopic proviral insertion in the AIF gene. These mice
develop age-related ataxia and blindness from degener-
ation of neurons in the cerebellum and retina [55].
Moreover, this AIF deficiency inhibits oxidative phos-
phorylation by disrupting respiratory-chain complex I
function both in vitro and in vivo, and is accompanied by
severe losses of this complex in retina and brain [54]. In
addition, cerebellar neurons derived from Harlequin
mutant mice display particular vulnerability to oxidative
stress induced by endogenous or exogenous peroxides,
leading to the hypothesis that AIF might also act as a
peroxide scavenger [55].

Cell-cycle re-initiation and neuronal PCD

From a molecular perspective, neuronal PCD consistently
displays the unique property of ‘pathological’ re-initiation
of the cell cycle. Entry of neurons into the cell cycle from
quiescence (G0 phase) is, as in other cell types, controlled
by a family of cyclin-dependent kinases (CDKs). Acti-
vation of CDKs relies on their association with regulatory
units called cyclins in a cell-cycle phase-specific manner.
The cyclin A family is involved in both G1–S and G2–M
transitions through its association with CDK4 or CDK6
(for G1–S) and CDK2 (for G2–M), whereas cyclin B1 and
cyclin B2 interact with CDK1 and are required for
initiation and progression through M phase. Four
mammalian G1-phase cyclins have been identified: the
D-type cyclins D1, D2 and D3, and cyclin E. Extracellular
signals impinge on the cell cycle mainly during a limited
time window in the G1 phase. Thus, at least in non-
neuronal cells, the induction of cyclin D expression
depends on the presence of growth factors in the
extracellular environment and is therefore considered as
the growth factor sensor (reviewed in [56]). By contrast, in
www.sciencedirect.com
neurons, the induction of cyclin D (and other cyclins) is
segregated from cell division and is generally considered
as a prelude to cell death [1].

Expression of different cell-cycle molecules has been
found to precede excitotoxic death in various experimental
models. For example, cyclin D1 induction has been
reported to occur in focal [57] and mild [58] cerebral
ischemia, and in epilepsy [59]. Moreover, decreased
expression of CDK inhibitor p16INK4 has also been
found to precede neuronal death [58,60]. Despite these
findings, the involvement of cell-cycle molecules in
neuronal PCD is still debatable. For instance, the
induction of cyclin D1 was not observed in a model of
combined hypoxia–ischemia [60]. Apparent discrepancies
might relate to how ‘re-initiation’ of the cell cycle is
defined. In many studies, re-initiation of cell division is
assessed using incorporation of bromodeoxyuridine
(BrdU; an S-phase marker) or expression of cell prolifer-
ation antigens (e.g. PCNA or Ki67), thus enabling
discrimination between quiescent (G0) cells (e.g. post-
mitotic neurons) and cells in any other phases of the cycle
(i.e. G1, S, G2 or M). It has recently been demonstrated
that expression of these parameters in postmitotic
neurons is not only related to re-initiation of cell division,
but also can reflect DNA-repair activity [60].

In addition to acute neuronal injuries, cell-cycle re-
initiation, and specifically the G1–S transition associated
with increased cyclin D1 expression, has been implicated
in different forms of chronic neurodegeneration. However,
although increased cyclin D1 expression has been
reported in ALS [61], death of SOD1-depleted sympathetic
neurons could not be inhibited by CDK inhibitors [62], as
would be expected from effective cyclin D1-mediated CDK
activation.

G1–S transition associated with increased cyclin D1
expression has also been reported in a model of PD
(injection of 6-hydroxydopamine into the mouse striatum)
[63]. Moreover, the PD-associated toxicity of oxidized
dopamine metabolites is accompanied by upregulation of
cyclin B2 expression, suggesting the occurrence of G2–M
transition in this model [64]. However, in MPPC-treated
PC12 cells, induction of the CDK inhibitor p21WAF1/Cip1
was reported to prevent both entry into the cell cycle and
apoptosis, leading to a non-apoptotic death due to energy
depletion [65].

Finally, re-entry into the cell cycle has been proposed to
be an inherent part of neuronal PCD in AD. Indeed, Ab
peptides trigger a G1–S transition in neurons [66], and
increased cyclin D1 expression has been shown in AD
brains [67]. Moreover, aberrant expression of CDK1–
cyclin B1, the hallmark of G2–M transition, has been
documented in degenerating neurons of AD brains [67]. As
in other neurodegenerative diseases, upregulated
expression of the INK4 family of CDK inhibitors has
been observed in AD [68].

Relationship between oxidative stress and cell-cycle

re-initiation

Many questions remain unanswered in the exciting field of
neuronal PCD. For instance, although the relevance of
cell-cycle re-initiation and oxidative stress in
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neurodegenerative processes are now generally recog-
nized, it is not clear which event determines the type of
cyclin involved and the precise stage of the cell cycle when
neuronal death occurs. Why does cell-cycle re-initiation in
acute neuronal injuries apparently not proceed beyond
TRENDS in Neurosciences 
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G1–S transition, whereas an attempt is made toward the
G2–M transition under more chronic conditions? More-
over, the mechanisms underlying the selective vulner-
ability of certain neuronal populations to oxidative stress
have not been elucidated beyond possible variations in the
level of SOD expression [69].

In our view, however, the main issue that remains to be
clarified concerns the precise relationship between oxi-
dative stress and cell-cycle re-initiation. It is still
unknown whether oxidative-stress-induced neuronal
PCD requires re-initiation of the cell cycle (reviewed in
[70]). According to an interesting alternative concept that
is currently emerging, cell-cycle re-entry in neurons is a
prerequisite for DNA repair, as shown in vitro for neurons
exposed to DNA-damaging agents [71]. Accordingly, signs
of DNA damage such as the accumulation of 8-hydro-
xydeoxyguanosine (8–0HdG) are frequently seen in
postmortem human brains and in cellular and animal
models of oxidative-stress-associated neurodegeneration
(reviewed in [5]). Re-initiation of the cell cycle in dying
neurons could be a tentative attempt to repair oxidative-
stress-induced DNA damage, and might thus be con-
sidered as a physiological ‘defence’ mechanism in the
presence of damaged DNA (Figure 2).

This hypothesis is conceptually at odds with the
current view that unscheduled re-entry of neurons into
the cell cycle is pathological, leading to ‘abortive
mitosis’ and cell death. However, in accordance with
the hypothesis proposed here is that DNA repair is
less efficient in terminally differentiated postmitotic
neurons than in actively proliferating neuronal pre-
cursors [72]. The hypothesis that re-initiation of the
cell cycle in dying neurons is an attempt at repair
should now be tested in different models of acute and
chronic neurodegeneration. If confirmed, it could have
a tremendous impact on the concept of neuroprotection
because the current strategies based on CDK inhibi-
tors are designed to prevent ‘pathological’ cell-cycle re-
initiation. Strategies that decrease oxidative stress (by
uncoupling mitochondrial oxidation from phosphoryl-
ation), control cell-cycle re-entry (by inhibition beyond
the G1–S transition checkpoint, thus enabling DNA
repair but inhibiting DNA replication) and/or block
non-classical apoptotic forms of PCD could prove more
efficient than current approaches (Figure 2). Interest-
ingly, some caspases (caspase-2) and a cyclin D (D3)
seem to have a role in DNA repair (reviewed in [73]);
their presence in dying neurons is therefore not
obviously linked to classical apoptosis and cell-cycle
re-initiation, respectively. Hence, the inhibition of
caspase-independent PCD, which requires better
knowledge of the relevant underlying mechanisms,
could provide targets for the development of more
effective neuroprotective therapies.
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