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During brain development, transmitter-gated receptors

are operative before synapse formation, suggesting that

their action is not restricted to synaptic transmission.

GABA, which is the principal excitatory transmitter in

the developing brain, acts as an epigenetic factor to

control processes including cell proliferation, neuroblast

migration and dendritic maturation. These effects

appear to be mediated through a paracrine, diffuse,

non-synaptic mode of action that precedes the more

focused, rapid mode of operation characteristic of

synaptic connections. This sequential operation implies

that GABA is used as an informative agent but in a

unique context at an early developmental stage. This

sequence also implies that by altering these effects,

drugs acting on the GABA system could be pathogenic

during pregnancy.
Introduction

Neurotransmitters have central roles in synaptic com-
munication and convey most of the information required
for operation of the brain and its networks. However, as is
often the case in nature, this device is used more than
once. Thus, it is now clear that GABA and glutamate
operate before synapse formation (Box 1) and that, in
addition to their roles in synapse communication, they
have a trophic role in neuronal maturation. Recent studies
also suggest that GABA is the first neurotransmitter to
become functional in developing networks and provides
most of the initial excitatory drive. GABA-mediated
mechanisms thus have a central role both in early stages,
when networks are non-existent and neurons are an
ensemble of immature cells that have little communi-
cation, and later, when GABAergic synapses operate and
the emerging network generates a coherent pattern of
activity. In this respect, GABA provides an excellent
example of the multiple forms and actions that a molecule
can exert at different developmental stages. This review
will examine the roles of GABA, particularly in relation to
proliferation, neuronal migration, synapse formation and
activity-dependent mechanisms that are essential for
network construction.
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When GABA modulates progenitor proliferation and

survival

In several preparations, GABA agonists exert important
but contrasting effects on cell proliferation depending on
the type of precursor investigated and the type of animal
assayed (e.g. rats versus mice). Thus, GABA inhibits cell-
cycle progression of precursors in neurospheres and
organotypic striatal slices [1], shortens the cell cycle in
cortical slices [2] and decreases DNA synthesis and the
number of cells that incorporate bromodeoxyuridine
(BrdU) in acute slices [3]. By contrast, GABA increases
the proliferation of cerebellar granule cell precursors [4].
For these actions, GABA functions in association with
various trophic factors. Thus, GABA or the GABA receptor
agonist muscimol inhibits the proliferative effects of basic
fibroblast growth factor (bFGF) on cortical progenitors,
leading to an increased number of differentiated neurons
[5]. Trophic factors, including epidermal growth factor
(EGF) and FGF2, decrease GABA production [1] and
GABAA receptor expression [5], providing a feedback
signal to control cell division (Box 2).

Does GABA modulate cell death or cell survival? In
general, even when excitatory, GABA does not promote
cell death or cell survival of neuronal cultures (e.g. Ref. [4]).
However, high doses of muscimol (10 mM) induce death
of GABAergic neurons in 3D cultures [6]. Furthermore,
treatment of pregnant rats with bicuculline during the
post-proliferative phase [from embryonic day (E)18 to
E21] reduces significantly the number of parvalbumin-
immunoreactive neurons in the neostriatum [7]. However,
these effects are difficult to interpret considering the
complex actions of seizures generated in pregnant rats by
bicuculline. This is also exemplified by the complex
literature concerning the effects of antiepileptic drugs,
many of which act on GABA receptors. These can cause
apoptotic neurodegeneration in the developing rat brain
[8] but whether this is mediated by concentrations that
are obtained in humans is controversial.
When GABA modulates neuronal migration

Once immature neuroblasts generated in the germinal
layers become postmitotic, they start to migrate into the
cerebral tissue to reach their targets. In the cerebral
cortex there are two different modes of migration – a
radial mode for the principal pyramidal cells, and a
tangential mode for the interneurons [9]. GABA, acting on
several receptor subtypes (of both GABAA and GABAB
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Box 1. GABA as a diffusible factor that acts before synapse formation

Cell precursors and maturing neurons express functional GABA

receptors long before formation of functional synaptic contacts

[40,44,45] (Figure Ia–c). These receptors might act as sensors to detect

extracellular GABA, which is released from pioneer and migrating

neurons [43], growth cones [46,47] and eventually glia [48]. In

maturing brain, GABA and glutamate are released via soluble

N-ethylmaleimide-sensitive factor attachment protein receptor

(SNARE)-dependent and SNARE-independent mechanisms (i.e. vesi-

cular and non-vesicular modes, respectively) [45]. The latter could

involve exchangers, gap junction hemichannels or volume-sensitive

ClK channels [45]. Diffusion of GABA in the extracellular space is

facilitated by delayed maturation of GABA transporters that, although

present by the end of gestation [49,50], remain ineffective in the brains

of perinatal rats and mice [45]. In maturing brain, GABA combined

with glutamate activates very immature neurons by acting mainly on

GABAA and NMDA receptors. Thus, local stimulation close to the

recorded cells induces a current that is characterized by long kinetics.

This type of response was observed at prenatal stages and in the first

postnatal week but not inmoremature rats (Figure Id). This response –

referred to as ‘early slow current’ – is mediated by the activation of

GABAA, and to a lesser extent NMDA, receptors. Spontaneous events

of slow kinetics were recorded even in immature munc 18-1 knockout

mice [45], in which vesicular release of transmitters has been

eliminated [51]. Tonic SNARE-independent release of GABA also

occurs in immature neurons, because GABAA receptor antagonists

generated a current (Figure Ic). Therefore, GABA is a paracrine factor

during maturation that contributes to stabilize the resting membrane

potential of immature neurons.

(a) (b)

(c) (d)

Figure I. GABA as a paracrine factor [45]. (a,b) Patch clamp recordings (b) of an immature pyramidal neuron injected with biocytine (a). This cell did not have functional

synaptic contacts, as revealed by bath-application of latrotoxin, which stimulates vesicular exocytosis. However the cell displays spontaneous events of long kinetics. A

single stimulation of the stratum radiatum evokes in this cell a current of long kinetics that is sensitive to bicuculline and the NMDA receptor antagonist MK-801, thus

revealing a paracrine activity of GABA and glutamate although the activation of GABAA and NMDA receptors; AMPA receptors did not contribute to this slow-activated

current. (c) Synaptically silent cells express functional GABAA, NMDA and AMPA receptors as depicted by the currents evoked by specific agonists (isoguvacine in the

case of GABAA receptors). In addition, application of GABAA receptor antagonists (e.g. bicuculline and picrotoxin) unmasks a constitutive release of GABA, which

tonically activates GABAA receptors, thus contributing to maintain the resting membrane potential. (d) Early slow currents (ESCs) induced by the stimulation of the

stratum radiatum are evoked in almost all maturing neurons from E20–P0 pups, but they are not evoked after P20. Representative biocytin-reconstructed pyramidal cells

from animals sacrificed at E20, P6, P14 and P30 are illustrated. Scale bar in (a), 20 mm.
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subclasses), modulates migrating neuroblasts as a moti-
lity-promoting, an acceleratory or a stop signal [2,10–13].
This has been observed in a diverse brain structures
(cerebellar and cerebral cortices, and olfactory epithelium)
and neuronal subtypes (e.g. granule cells, pyramidal
neuroblasts and tangentially migrating interneurons).

Unfortunately, studies performed so far have used only
in vitro preparations; there is to the best of our knowledge
no in vivo description of neuronal migration in the
offspring of animals treated with GABA receptor agonists
or antagonists during pregnancy. From a clinical perspec-
tive, it is important to stress that GABAA agonists are
frequently used as sedatives, tranquillizers, antiepileptic
drugs or anaesthetics. They are used widely in paediatric
www.sciencedirect.com
and obstetric medicine. It is thus possible that such treat-
ments during pregnancy influence migration in maturing
foetuses, and result in cortical lamination defects or
even formation of cortical ectopias. Teratogenic agents
(e.g. alcohol or cocaine), physical agents (e.g. irradiation)
and biological agents (e.g. viral infection) acting during
the period of cell migration [14,15] might indeed result in
cortical malformation. The best-documented examples are
the alterations induced by alcohol consumption during
pregnancy (foetal alcohol syndrome), which can include
facial dimorphism, intrauterine growth retardation, brain
lesions, cerebral dysfunction and mental retardation.
Among the most characteristic lesions in this syndrome
are disturbances of cortical lamination, neuronal ectopias
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Box 2. Growth factors are important for early GABA

signalling

The actions of neurotrophins and GABA are heavily interconnected,

providing a major feedback mechanism. Thus, activity enhances

expression of brain-derived neurotrophic factor (BDNF) and pro-

motes its release; through the activation of trkB receptors, this

promotes postnatal maturation of GABA-mediated inhibition,

increasing the frequency of GABA-mediated postsynaptic currents

(PSCs) in the cerebral and cerebellar cortices [52] and in cultured

hippocampal neurons [53–55]. Antibodies against BDNF and NT-4

reduce the mean synapse-to-cell ratio (as determined by electron-

microscopy) in P0 organotypic cerebellar cultures [56]. Conditional

deletion of trkB in cerebellar precursors is associated with a dramatic

reduction in numbers of GABAergic boutons and synaptic special-

izations, although the final number of GABAergic cells was

unaffected [57]. However, several reports propose an opposite role

for BDNF. Analysis of the superior colliculus of BDNFK/K mice

proved that the chronic absence of BDNF was associated with a

significant increase in the amplitudes of GABA-evoked spontaneous

and miniature inhibitory PSCs, with no change to the frequency of

miniature inhibitory PSCs or the degree of paired-pulse facilitation

[58]. Most importantly, these effects were mimicked in normal mice

by the tyrosine-kinase inhibitor K-252a, which blocks BDNF receptor

signaling [58]. In addition, acute treatment of primary hippocampal

cultures with BDNF reduces significantly the amplitudes ofminiature

inhibitory postsynaptic potentials, an effect that requires functional

trkB receptors [59].

As proposed by Zafra et al. in 1991 [60], the interplay between

excitatory and inhibitory activity determines the levels of BDNF

expression, so that in immature brain GABA would cooperate with

glutamate to enhance expression of this neurotrophin. In immature

cultured hippocampal neurons, GABA andmuscimol augment levels

of intracellular Ca2C, c-Fos mRNA and BDNF mRNA, in a GABA-

receptor-dependent and Ca2C-channel-dependent manner [61]. This

effect is valid in immature neurons only – when GABA excites

neurons – because GABAA agonists have no effects on c-Fos and

BDNFmRNA levels inmature neurons [61,62]. It is thus plausible that

the trophic effects of GABA inmaturing brain aremediated in part via

BDNF and trkB activation. Accordingly, application of exogenous

BDNF to hippocampal organotypic explants mimicked the stimu-

latory effect of bicuculline on GAD65-immunoreactive terminals, and

antibodies to BDNF decreased the density of such terminals in

bicuculline-treated slices [33]. BDNF is also required for the effect of

GABA on the expression of neuropeptide Y, because this effect was

suppressed in cultures from BDNF-knockout embryos [63]. Interest-

ingly, BDNF is produced by cortical and hippocampal pyramidal

glutamatergic neurons but not by GABAergic interneurons, despite

its dramatic action on neurochemical and morphological maturation

of inhibitory neurons in the cerebellum, neostriatum, neocortex and

hippocampus [52,54,63–67]. This paracrine mode of action of trophic

factors, combined with the regulation of the action of GABA in

principal cells, illustrates howGABA can in parallel modulate its own

actions in principal cells and, via the same trophic factor, control

maturation of the neurons from which it is released.
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and reduced thickness of the cortical mantle. Interest-
ingly, ethanol inhibits the proliferation of neuronal
precursors and impairs their migration, and it augments
neuronal death [16,17]. These effects are likely to be
related to its action on GABAA and NMDA receptors [15],
although the interference with other factors can also
account for its adverse effects. Data from humans on
the possible teratogenic actions of antiepileptic drugs
(e.g. Ref. [18]) are also controversial. Clearly, more data
are required to estimate the relevance of this important
clinical issue and, notably, to determine the contribution of
GABA to the teratogenic actions of antiepileptic drugs and
seizures.
www.sciencedirect.com
When GABA modulates neuronal arbour elaboration

and differentiation

Spoerri [19] proposed GABA as a trophic or regulatory
factor having observed that treatment of dissociated
embryonic chick cortical and retinal cells using GABA
(1 mM) increased the length and branching of the neurites
and augmented the density of synapses. This was
extended to mammalian neurons by Barbin and co-
workers [20], who showed that GABAA receptor antagon-
ists reduced the dendritic outgrowth of cultured rat
hippocampal neurons (Figure 1). Subsequent studies in
diverse brain structures, including cerebellar granule
cells [21], cortical plate and subplate interneurons [22],
spinal cord cells [23] and raphe nuclei 5-hydroxytrypta-
mine (serotonin)-producing neurons [24], showed similar
results. The trophic effects of GABA have been reproduced
by agents acting on GABA synthesis, receptor activation
or blockade, intracellular ClK homeostasis, or L-type Ca2C

channels. Furthermore, blockers of Ca2C/calmodulin
kinase II (CaMKII) or mitogen-activated protein kinase
kinase reduce the trophic effects of GABA [21], suggesting
that GABA exerts his neuritogenic role through Ca2C

influx and the subsequent activation of Ca2C-dependent
kinases. Interestingly, postsynaptic CaMKII also gener-
ates structural synaptic rearrangements between cul-
tured cortical neurons [25], supporting the notion that
CaMKII might be involved in the consolidation of specific
synaptic inputs.

The contribution of GABAergic synapses to the for-
mation of GABAergic and glutamatergic synapses is less
well documented than the contribution of glutamate
synapses to this process. The sequential expression of
GABA and glutamate raises the possibility of sequential
actions of the two transmitters. Because the paracrine
(Box 1) and synaptic actions of GABA are excitatory and
precede those of glutamate [26], it is possible that these
actions also preferentially modulate earlier processes.
Unfortunately, these issues have not been taken into
account in earlier studies. Based on neuronal or slice
cultures, the prevailing concept is currently one of a
homeostatic plasticity mechanism that dynamically
adjusts synaptic strengths in the correct direction to
promote stability [27]. In this scheme, average neuronal
activity levels are maintained by a set of homeostatic
mechanisms: reducing excitation will lead to enhance-
ment of excitatory synapses and conversely reducing
inhibition will lead to enhancement of inhibitory
synapses. In keeping with this model, chronic blockade
of NMDA receptors in hippocampal slice cultures leads to
a substantial increase in the frequency of miniature
excitatory postsynaptic currents (mEPSCs) [28]. Further-
more, in cultured hippocampal neurons, removing inhi-
bition leads to reduction of excitatory and enhancement of
inhibitory synaptic strengths, whereas the opposite effects
were observed after reduction of excitatory inputs [29].
However, the simple concept of homeostatic mechanisms
would be less than adequate to explain transmitter-
mediated regulation of synapse formation by activity
during brain maturation. Indeed, there are multiple
sequences during brain development that are not centred
on the issue of equilibrium between excitation and
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(a) (b)

(c) (d)

Figure. 1. Effects of GABA on dendrite outgrowth and synaptogenesis. (a) In vitro analyses have shown that treatment of neuronal cultures (here E18 rat hippocampal

neurons) with GABAA receptor antagonists (e.g. bicuculline) results in a significant reduction of dendrite outgrowth [20]. (b) In vivo analysis confirmed that synaptic activity

has an important effect on dendrite outgrowth, at least for basilar dendrites of hippocampal CA1 pyramidal cells [68]. P1 rat pups received a single injection of tetanus toxin

into the hippocampus and the consequences on dendrite maturation were measured after 5 d [68]. Here, only cell bodies and basilar dendrites are shown. Grey colours

outline the borders of the oriens (pale) and pyramidal cell (dark) layers. (c) Formation of GABAergic synapses: early effects of activity deprivation. During early maturation

(P0–P2), the synaptogenesis rate was impaired by treatment with the NaC channel blocker tetrodotoxin (TTX), with glutamate receptor antagonists [2-amino-5-

phosphonovaleric acid (APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] or with a GABAA receptor antagonist [bicuculline (Bicu)], as compared with application of

normal artificial cerebrospinal fluid (ACSF) [32]. In this histogram, the frequencies of miniature GABAA-receptor-mediated postsynaptic currents (mGABAA-PSCs) – recorded

in CA3 pyramidal cells (in toto preparation from P0 hippocampus) after 24 h in vitro in the different conditions – are reported relative to the frequencies at P0. (d) Formation of

GABAergic synapses: later effects of bicuculline. Chronic blockade of GABAA receptors in hippocampal organotypic explants from P7 pups resulted in increased numbers of

GABAergic synapses. Numbers were measured using immunoreactivity (IR) for GABA, glutamic acid decarboxylase (GAD)65, GABAA receptor a1 subunits (GABAA a1) and

GABAA receptor a2 subunits (GABAA a2), and were expressed as percentages of control values, according to data from Refs [33,69].
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inhibition. Thus, GABA excites immature neurons and
acts during development in synergy with – not in
opposition to – NMDA receptors [30]. GABAergic synapses
are also formed before glutamatergic synapses, suggesting
that dynamic control of the formation of GABA mechan-
isms must be independent of glutamate synapses, but that
formation of glutamate mechanisms need not be con-
trolled independently of GABA synapses. In addition,
GABAergic interneurons become postmitotic and form
synapses before the principal glutamatergic neurons
[26,31], and they generate network-driven activities at a
stage when most pyramidal neurons have no functional
synapses [26]. Because GABA receptors are also operative
before synapse formation (see preceding discussion), the
excitatory actions of GABA have a programmed develop-
mental role that does not simply inhibit glutamate
synapses; this raises the possibility that there are other
mechanisms of regulating GABA – and/or glutamate –
that are not interdependent. In keeping with this,
applications of tetrodotoxin (TTX) or antagonists of
GABA or glutamate receptors for 24 h in intact postnatal
day (P)0 rat hippocampus in vitro have a similar effect on
the formation of GABAergic synapses: blocking the
frequency increase of miniature GABA-receptor-mediated
EPSCs that occurs spontaneously in vivo and in vitro [32].
This suggests that the formation of GABAergic synapses
requires action potentials and ongoing activity generated
www.sciencedirect.com
by GABA or glutamate, but not both. By contrast, in
organotypic hippocampal explants from P7 rat pups, at a
stage when GABA switches from being excitatory to
inhibitory, chronic treatment with antagonists of GABA
and glutamate receptors respectively increase and
decrease the number of GABA-immunoreactive synapses
on hippocampal pyramidal cells [33] (Figure 1). These
observations suggest that during the earlier phases of
maturation the activity-dependent homeostatic device is
not aimed at equilibrating excitation and inhibition, but
that this is the case during the later phases of maturation.
When the GABA shift is activity dependent

In maturing brain, GABA exerts a depolarizing action
related namely to a reverse gradient of ClK. This transient
effect is essentially due to a low expression of the neuronal
ClK-extruding KC/ClK co-transporter KCC2 [34]. There is
general agreement that the GABA switch from excitatory
to inhibitory action is mediated by upregulation of the co-
transporter KCC2, which extrudes ClK and has delayed
expression [35]. Whether this shift is activity dependent is
at present controversial. Ganguly et al. [36] reported that
the GABA switch is delayed by chronic blockade of GABAA

receptors, and accelerated by increased GABAA receptor
activation. These authors suggested that GABA activity
modulated the levels of KCC2 mRNA, acting as a self-
limiting trophic factor during neural development.
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However, this notion was challenged by Titz et al. [37],
who showed that this switch occurred in cultured
midbrain neurons treated with GABAA receptor antagon-
ists, and by Ludwig et al. [35], who showed that chronic
treatment of cultured hippocampal explants with the
GABAA antagonist picrotoxin did not affect the develop-
mental upregulation of KCC2 protein expression. Inter-
estingly, these authors also demonstrated that TTX and
glutamate receptor antagonists affected neither the
developmental pattern of KCC2 expression (suggesting
that the maturation of GABA system itself does not
require neuronal spiking) nor ionotropic transmission
in vitro.

When knocking-out GADs does not affect brain

development

This plethora of actions of GABA stands in contrast to the
lack of effects of genetically deleting the enzymes that
synthesize GABA. Thus, double knockdown of the GABA-
synthesizing enzymes glutamic acid decarboxylase
(GAD)65 and GAD67 did not produce discernible disorders
of brain histogenesis, including cortical layering [38].
Although this observation might suggest that neuro-
genesis and cell migration do not require GABAergic
systems, it bears stressing that the redundancy in knock-
out animals is well documented and that other trans-
mitter systems could compensate for GABA loss, including
modulation of cortical cell proliferation [2,3] and
migration [12] by glutamate. Clearly, other studies
measuring the effects on activity of knocking out these
GADs, and more detailed determination of the morpho-
logical properties of these networks, are required.

Analysis of mice with knockout mutations affecting
GABA receptors, namely the GABAA receptor a1 subunit,
did not provide significant evidence for the trophic effects
of GABA because changes to synaptic GABA transmission
were only minor. However, reduced outgrowth of dendritic
spines in the juvenile visual cortex of these mice has been
reported [39].

Concluding remarks

Recent observations suggest that GABA has a variety of
important functions during maturation. This role is not
restricted to GABA because several other transmitters can
modulate essential functions in developing brain [40]. The
uniqueness of GABA is epitomized by its early operation –
before glutamate synapses are functional – indicating
that, at least during a restricted period, GABA provides all
the excitatory drive. In addition, the possibly activity-
dependent shift of GABA actions following upregulation of
KCC2 provides a remarkable modulation of the set-point
at which GABAwill resume its classical inhibitory effects.
Interestingly, GABA becomes excitatory in adult patients
with epilepsy [41], owing to a shift in the ClK reversal
potential. Similar changes have been observed in acute
preparations in vitro, implicating them in the genesis of
epileptic foci [42] and suggesting that they are related to
seizure-induced downregulation of KCC2 expression [43].
Therefore, recapitulation of GABA developmental mech-
anisms might have physiological and/or pathological
consequences on adult brain. The pivotal role of GABA
www.sciencedirect.com
and its strong relationship with other transmitters and
trophic factors (Box 2) provide a feedback mechanism to
reinforce the role of GABA (e.g. by synergistic excitatory
actions of GABAA and NMDA receptors [30]). In this
respect, GABA would have a pivotal role in coordinating
convergent factors and actions aimed at sculpting neurons
and networks.

Study of the developmental actions of GABA has far
improved our understanding of how activity can modulate
brain formation and also exert pathogenic effects. How-
ever, little attention has been paid to the repercussions of
neurological drug therapy on brain maturation. Clearly,
many antiepileptic, psychotropic and sedative drugs could
perturb brain maturation by their actions on GABA
function. In the developmental saga of GABA actions,
there is still much to be discovered and many surprises to
be found.
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