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146 rue Léo Saignat, 33076 Bordeaux Cedex, France
2Institut de Neurobiologie de la Méditerranée (Institut National de la Recherche Médicale U 29), 163 route de Luminy, BP 13,

13273 Marseille Cedex 9, France
5–10 ms

Subthalamic
nucleus

Substantia
nigra

Globus
pallidus

Putamen

Caudate
nucleus

HFS(a)

(b)

GPe

PPN

Thalamus

GPi
SNr

Cortex

Cd–Put

60–200 µs

STN Ventral
thalamus

TRENDS in Neurosciences 

Figure 1. Schematic representation of the basal ganglia nuclei and a high-frequency

stimulation (HFS) electrode implanted in the subthalamic nucleus (STN). (a) The

basal ganglia are interconnected nuclei: the caudate nucleus and putamen

(Cd–Put), the globus pallidus (external GPe and internal GPi segments), the STN

and the substantia nigra (SN). HFS is applied to the STN in pulses of 60–200 ms every

5–10 ms. (b) Basal ganglia are included in a cortical–basal ganglia–thalamocortical

loop. STN controls the output nuclei of the basal ganglia [the GPi and pars reticulata

of the SN (SNr)]. STN receives afferents from the basal ganglia (GPe) and from
Deep-brain stimulation at high frequency is now con-

sideredthemost effectiveneurosurgical therapy formove-

ment disorders. An electrode is chronically implanted in

a particular area of the brain and, when continuously

stimulated, it significantly alleviates motor symptoms.

In Parkinson’s disease, common target nuclei of high-

frequency stimulation (HFS) are ventral thalamic nuclei

and basal ganglia nuclei, such as the internal segment of

the pallidum and the subthalamic nucleus (STN), with a

preference for the STN in recent years. Two fundamental

mechanisms have been proposed to underlie the bene-

ficial effects of HFS: silencing or excitation of STN neu-

rons. Relying on recent experimental data, we suggest

that both are instrumental: HFS switches off a patho-

logical disrupted activity in the STN (a ‘less’ mechanism)

and imposes a new type of discharge in the upper

gamma-band frequency that is endowed with beneficial

effects (a ‘more’ mechanism). The intrinsic capacity of

basal ganglia and particular STN neurons to generate

oscillations and shift rapidly from a physiological to a

pathogenic pattern is pivotal in the operation of these

circuits in health and disease.

Introduction

Chronic high-frequency stimulation (HFS) of the brain,
also referred as to deep-brain stimulation, is becoming
increasingly important in the treatment of movement
disorders. In the case of Parkinson’s disease, which results
from the degeneration of the dopaminergic neurons of the
substantia nigra, HFS of the subthalamic nucleus (STN)
(Figure 1) is now a widely used neurosurgical therapy
because it markedly improves motor symptoms (brady-
kinesia, rigidity and tremor) and reduces medication
needs [1–3]. The ideal candidate patient for HFS should
have a preserved good L-dopa response but long-term treat-
ment side effects, such as motor fluctuations and dyski-
nesias. Congruently, dopaminergic medication can be
reduced up to 50% during STN-HFS. In both patients and
animal models of Parkinson’s disease, STN neurons have
a pathological activity characterized by loss of specificity
in receptive fields, irregular discharge with a tendency
towards bursting, and abnormal synchronization [4–8].
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structures external to the basal ganglia [cortex, parafascicular nucleus of the

thalamus and pedunculopontine nucleus (PPN)]. The direct striatonigral pathway is

not directly controlled by STN-HFS and is omitted from this figure.
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The observations that STN activity is disorganized in the
Parkinsonian state and that lesion or chemical inacti-
vation of STN neurons ameliorate motor symptoms led to
the hypothesis that STN stimulation at high frequency
silences STN neurons and, by eliminating a pathological
activity or a pathological pattern, alleviates the symptoms
[9–13]. However, this ‘less’ hypothesis raises several
issues that have not been clarified. Electrical stimulation
in the CNS usually causes, rather than blocks, activity
of axons [14], and STN neurons can discharge high-
frequency spikes [15], casting doubt on the silencing
hypothesis. Other electrophysiological, pharmacological
and metabolic studies raise another possibility, which we
refer to as the ‘more’ hypothesis: HFS not only suppresses
the pathological STN activity but also imposes a new
activity on STN neurons. This is not simply excitation
(spikes evoked among spontaneous ones) but rather total
replacement of the pathological activity of STN neurons by
a new HFS-driven pattern that can influence the target
neurons of the STN – that is, the output structures of
the basal ganglia. This article summarizes cellular and
imaging results obtained in different preparations and
discusses the functional role of STN-HFS in the basal
ganglia network.
HFS parameters

In patients, STN-HFS is an extracellular, cathodic, mono-
polar 24-hours-a-day stimulation delivered through large
four-contact electrodes. Such stimulation induces an elec-
trical field that spreads and depolarizes neighboring
membranes – those of afferent axons, cell bodies, efferent
axons and axons surrounding the STN – depending on
neuronal element orientation and position in the field, and
on stimulation parameters [16,17].
Comparison of HFS in patients, in animals and in vitro

Optimal clinical results are obtained on an empirical basis
using pulses of 60–200 ms duration and 1–5 V amplitude,
delivered in the STN at 120–180 Hz (Figure 1). Frequency
is the most important parameter because stimulation at
5–10 Hz worsens parkinsonism and no significant improve-
ment is observed between 10 Hz and 50 Hz [3,18]. Pulse
frequency and pulse width are parameters that remain
constant whichever electrode and recording configuration
Table 1. LFS parameters used to analyze the responses of STN neu

Stimulating

electrode

LFS duration Pulse frequency

(Hz)

Pulse width

(ms)

Pulse am

(mA)

Monopolar 20 s 14 60 2000

Monopolar 500 ms 5 200 2–500

Bipolar 1–2 min 5 50 20–150

Bipolar 10 s 1–10 60 400

Bipolar 100 ms 30–80 NR 0.2–1.0

NR 10 s 10–25 50–100 10–500

NR 200 ms 20 50–100 10–500

Monopolar 1–2 h 10 90 500

aThe upper four rows are from extracellular recordings and the lower four rows are from
bAbbreviations: 6-OHDA, 6-hydroxydopamine; EPSPs, excitatory postsynaptic potentials

reported; STN, subthalamic nucleus.
cParameters for stimulation through large macroelectrodes.
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is used. By contrast, comparison of pulse amplitude between
different in vivo and in vitro studies is complicated by
differences of the surrounding medium and the surface
area of electrode contact. The contacts of the electrode
used in the clinic are large compared with those generally
used in rat tissue in vivo and in vitro. As a result, to deliver
similar current density at the electrode contact, we should
apply less current in the rat STN than in the human STN.
However, because the rat STN is much smaller, a smaller-
tipped electrode with the same current density could
produce a comparable effect in terms of percentage of
neurons activated.
Neural elements activated at low versus high frequency

Axons represent the most excitable components of neu-
rons [19,20] and are activated by low and high frequencies
of stimulation. By contrast, the postsynaptic responses
resulting from activation of afferent axons vary according
to the frequency and duration of the stimulation. Low-
frequency stimulation of the STN (STN-LFS, 0.1–30.0 Hz)
depolarizes glutamatergic and GABAergic synaptic term-
inals close to the stimulating electrode and evokes
inhibitory and excitatory postsynaptic potentials (IPSPs
and EPSPs, respectively) and spikes (Table 1). In general,
these postsynaptic responses show plasticity and vary
with the frequency and duration of stimulation. For
example, glutamate-mediated EPSPs do not follow long-
term 130-Hz stimulation of the STN [21], and the
amplitude of GABA-dependent IPSPs diminishes during
repetitive stimulation in other networks [22].

Techniques and preparations employed to study the
mechanisms of HFS include electrophysiological tech-
niques (extracellular recordings in vivo or intracellular
recordings in vitro), measurement of neurotransmitter
release in vivo, post-mortem immunohistochemistry of a
metabolic marker, and imaging studies in vivo. Each
approach has its advantages and limitations, and com-
parison of their results should be of great interest.
However, fundamental procedures must be respected.
HFS must be tested at therapeutic (R100 Hz) and non-
therapeutic (!50 Hz) frequencies for comparison, and it
must be applied for at least minutes to mimic its clinical
use (Table 2).
rons during LFSa,b

plitude Preparation Response Refs

Patients No effect [25]c

Patients Inhibition [24]c

Control rats No effect [26]

Control and 6-OHDA -

anesthetized rats

No effect or inhibition [27]

Slices from control rats EPSPs [31]

Slices from control rat EPSPs, spikes [34]

Slices from control rats EPSPs, IPSPs [29]

Slices from control and

dopamine-depleted rats

EPSPs, spikes [21]

intracellular recordings.

; IPSPs, inhibitory postsynaptic potentials; LFS, low-frequency stimulation; NR, not
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Table 2. HFS parameters used to analyze the responses of STN neurons during HFSa,b

Stimulating

electrode

HFS duration Pulse frequency

(Hz)

Pulse width

(ms)

Pulse amplitude

(mA)

Preparation Author conclusion Refs

Monopolar 20 s 140 60 2000 Patients Inhibition [25]c

Monopolar 90–500 ms 100–300 200 75–500 Patients Inhibition [24]c

Bipolar 10 s 130 60 400 Control and 6-OHDA-

anesthetized rats

Inhibition [27]

Bipolar 10–60 s 70–120 NR 0.2–1.0 Slices from control rats Bursts then inhibition [31]

NR 0.1–2.0 s 100–140 50–100 10–500 Slices from control rats Excitation [29]

Monopolar 1–2 h 80–185 90 500 STN slice from control and

dopamine-depleted rats

Dual effect: bursts and

inhibition

[21]

aOnly papers illustrating electrophysiological recordings have been taken into account. The upper three rows are from extracellular recordings and the lower three rows are

from intracellular recordings.
bAbbreviations: 6-OHDA, 6-hydroxydopamine; HFS, high-frequency stimulation; NR, not reported; STN, subthalamic nucleus.
cParameters for stimulation through large macroelectrodes.
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Less

HFS is followed by a period of silence

STN activity was originally recorded immediately after
cessation of HFS, when artifacts are no longer present.
Such results consistently show a post-stimulus period of
reduced neuronal firing followed by the slow recovery of
spontaneous activity. HFS at frequencies O50 Hz in the
STN of patients undergoing functional stereotactic pro-
cedures [23–25], in the STN of rats in vivo [26,27] and in
rat STN slices in vitro [21,28,29] produces a period of
neuronal silence of hundreds of milliseconds to tens of
seconds (Figure 2a). The transient depression of the per-
sistent NaC and T-type Ca2C currents that normally under-
lie spontaneous activity of STN neurons [15,30] can explain
the post-HFS silence [28]. One central limitation of such an
approach is that what happens once the stimulation is
stopped might be only partly relevant for the actual actions
of HFS (i.e. during stimulation). For this reason, recordings
were subsequently performed during HFS.
HFS inhibits STN activity

Figure 2b compares extracellular STN recordings during
brief STN-HFS in patients off medication and in the
murine model of parkinsonism. They all show reduced
(a) (b)

200 ms

20 mV
10 s

//

Post HFS During HFS

300 Hz

166 Hz

(i)

(ii)

(i) 50 Hz

Figure 2. Inhibitory effect of high-frequency stimulation (HFS). (a) Decrease of subtha

(extracellular recordings) [23] and (ii) in rat STN slices (whole-cell recordings) [28]. Th

activity during brief STN-HFS (i) in patients [24] and (ii) in rats in vivo [27]. Control activ

7.43 HzG1.19 Hz during stimulation in 87% of the recorded neurons. Upper traces are

recordings after this procedure. Large spikes are artifacts and red dots indicate them in
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STN activity [24,25,27]. At 5–14 Hz, STN-LFS evokes
inhibition or no response (Table 1, first four rows) but the
higher the frequency of stimulation, the higher the
percentage of neurons presenting an inhibitory response
(Table 2, first three rows). By contrast, intracellular study
in slices from control rats reveals a primary period of
excitation during a brief HFS [31]. Cells present a tonic
activity with few action potential failures, then switch to
bursting mode and eventually stop firing. Whether single
spikes or spikes within bursts are spontaneous or evoked
by the stimuli has not been analyzed. Magarinos-Ascone
et al. conclude that HFS inhibits STN activity. Histological
analysis of the expression of cytochrome oxidase subunit I
(CoI) mRNA is an indicator of STN metabolic activity [32]
and has the advantage of eliminating the problem of
stimulation artifacts. Long-term HFS (130 Hz, 60 ms,
lasting for 45 min to 2 h) decreases by w10–35% expres-
sion of CoI mRNA in the stimulated STN of control and
lesioned rats, whether anaesthetized or awake [27,33]. By
contrast, stimulation at 20 Hz has no effect.
HFS inhibits target neuron activity

STN neurons fire with a pathological pattern in the
parkinsonian state and their inactivation can decrease
10 ms
100 ms

130 Hz
(ii)

lamic nucleus (STN) activity recorded immediately after STN-HFS (i) in patients

e red bar indicates duration of HFS at the stated frequency. (b) Decrease of STN

ity in the STN was regular (15.24 HzG1.44 Hz) before stimulation and decreased to

recordings before suppression or scale-down of artifacts and bottom traces are

(b,ii).
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activity in STN target structures – the globus pallidus
(GP) and substantia nigra (SN). Burbaud et al. [26] and
Tai et al. [27] have shown that brief STN-HFS
(100–130 Hz, lasting for 20–120 s) in control or lesioned
rats in vivo either decreases SN pars reticulata (SNr)
firing rates or has no effect. In the GP, it causes modest
inhibition (12%) in half of the neurons recorded [26].

Shortcomings of the ‘less’ hypothesis

The silencing hypothesis is based on extracellular record-
ings during very short periods of HFS (Table 2). One
potential problem with studies relying on extracellular
recordings is that large stimulus artifacts (of w2 ms
duration), in particular when the stimulation is close to
the recording site, preclude detection of possible short
latency (w1 ms) action potentials evoked by direct stimu-
lation of nearby cell bodies or axons. This problem is
exemplified by results following intranuclear LFS. LFS is
commonly used to evoke EPSPs and spikes in intracellular
recordings in vitro. These evoked spikes have not been
observed in extracellular recordings in vivo (Table 1),
suggesting that artifacts mask them. To solve this
problem, artifacts are scaled down using diverse pro-
cedures; however, whether these procedures really
unmask spikes or only clean recordings should be tested
during LFS (Figure 2b).

Proposed mechanisms for the silencing are (i) a direct
effect of HFS on STN neuronal membranes (the depolar-
ization block hypothesis) and (ii) ‘preferential’ activation
of GABAergic inhibitory afferents to STN neurons.
A depolarizing block means that the membrane is so
depolarized that spikes become smaller and smaller and
finally can no longer be evoked, owing to inactivation of
the voltage-gated NaC current. Filali et al. [24] and Tai
et al. [27] have excluded this hypothesis, because STN
spike amplitude does not change in the initial part of the
train and the firing rate does not increase before activity
decreases. Enhancement of GABAergic currents is also
unlikely because of the usual failure of inhibition during
long-term repetitive stimulation [22]. Although the CoI
mRNA results are compatible with inhibition, these obser-
vations are conditioned by the possible rapid changes of
STN activity once HFS is stopped, and by the fact that
HFS-driven activity might need less energy than patho-
logical activity. Finally, the analysis of SN responses to
STN-HFS cannot provide direct information about the
effect of HFS on STN neurons, owing to the complexity of
the intranigral network. In conclusion, there is indeed a
reductionof the number ofSTNspontaneous spikes between
stimulation artifacts, but very short-latency evoked spikes
close to the artifacts would not be detected in these experi-
ments. Intracellular recordings of STN neuronal activity or
extracellular recordings of target neuron responses should
enable such spikes to be distinguished from stimulation
artifacts, owing to the large amplitude of STN intracellular
spikes and the latencies of target cell responses.

More

HFS excites STN neurons

Lee et al. [29,34] have reported that STN-HFS involves
excitation in rat slices in vitro (Table 2). LFS at 20 Hz
www.sciencedirect.com
evokes EPSPs and spikes (Table 1) and HFS at 100–140 Hz
increases action potential firing to its maximum (Table 2).
Lee et al. did not analyze precisely the relationship between
spikes and stimuli, or the behavior of spontaneous activity
during HFS. Because spikes disappear in the presence of
channel blockers, EPSPs and spikes generated during 2 s
trains at 100 Hz are proposed to result from the activation of
glutamate-mediated transmission.

HFS has a dual effect

In whole-cell recordings from rat STN slices [21], long-
term (1–2 h) HFS (80–185 Hz) evokes bursts of spikes
(Table 2 and Figure 3a). Detailed analysis shows that
within bursts each spike is evoked by a stimulus, although
not all stimuli evoke a spike, and spontaneous spikes are
absent between stimuli. Therefore, during HFS, the acti-
vity of the recorded STN neurons is no longer spontaneous
but becomes entirely driven by the stimulation. This new
HFS-driven pattern results from direct activation of the
STN membrane because it is still present when blockers
of glutamate and GABA receptor channels are applied.
Neurons respond intermittently (in bursts) to HFS, even
though HFS is continuous, owing to intrinsic membrane
properties of STN neurons [35]. The membrane is hyper-
polarized between bursts probably as a result of Ca2C

entry during bursts. Stimuli cannot evoke spikes during
these hyperpolarized periods. We propose that HFS at
therapeutic parameters has a dual effect: it suppresses
spontaneous activity and drives STN neuronal activity
(Figure 3a). Interestingly, non-therapeutic LFS (1–10 Hz)
evokes EPSPs and spikes at 1–10 Hz and does not sup-
press spontaneous activity; rather, it has a simple exci-
tatory effect (Table 1).

HFS excites target neurons of the STN (GP and SN)

Stimulation of glutamatergic STN neurons [36] evokes
excitatory responses in neurons of the internal GP (GPi)
and SN [37–39], but STN stimulation can also elicit
sequences of excitation–inhibition owing to the complexity
of the network. For example, it can activate polysynaptic
GABAergic pathways such as (i) STN–external GP
(GPe)–GPi or STN–GPe–SN pathways, (ii) striato–nigral
fibers that run in the vicinity of the STN, and (iii) intra-
nigral SNr axon collaterals, via activation of the STN–SNr
pathway. STN-HFS in control rats in vivo excites 21% of
SNr cells and inhibits 79% of them (with a mean latency of
5.0G0.8 ms) [40] (Figure 3b). In monkeys with parkin-
sonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP), during STN-HFS at a frequency that
can alleviate parkinsonian signs (136 Hz or 185 Hz, lasting
for 25–35 s), the majority of GPi neurons (85%) respond with
a sequence of inhibition–excitation–inhibition–excitation
[41]. Peaks of activity occur at 4 ms and 8 ms of latency.
The discharge pattern of GPi neurons changes from
irregular to regular, tightly correlated with time of the
stimulation pulse (Figure 3c). Latencies of the excitatory
responses are compatible with activation of subthalamo–
nigral [37] or subthalamo–pallidal [42] neurons, thus
strongly suggesting that STN-HFS activates output STN
neurons, with inhibition resulting from the activation of
polysynaptic pathways.
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Figure 3. Dual effect of HFS in the STN and excitation of target neurons. (a) Dual effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in vitro: (i) HFS

forces STN neurons to discharge spikes (single or organized in bursts) that are time-locked to the stimulation [21]. The expanded trace shows that some stimuli (‘a’, a

stimulation artifact) do not evoke spikes and others evoke spikes with no detectable latency. Note the absence of spontaneous spikes. (ii) Interspike intervals (ISIs) as a

function of time in the recording before HFS (left) and as a function of time of occurrence within a burst during HFS at 130 Hz (right). Note that during HFS all spikes are on

average time-locked to one every 2–3 stimuli. (iii) Number of ISIs (Num.inter.) before HFS (left) and within bursts during HFS at 130 Hz (right). (b,c) Excitatory responses

evoked in target neurons of the STN. (b) Extracellular recordings in SNr in the rat in vivo during STN-HFS, showing spikes evoked one every 2–3 stimulations with a mean

latency of 3–6 ms [40]. (c) Overlays of 100 sweeps of extracellular recordings in GPi during STN-HFS in MPTP-treated monkeys, showing the regular pattern of the evoked

discharge [41]. Below are the post-stimulus histograms reconstructed from successive 7-ms periods before (left) and during (right) HFS. Increases significant at P!0.01 are

indicated with ‘C’; decreases significant at P!0.01 are indicated with ‘x’. Red dots indicate stimulation artifacts.
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In patients greatly ameliorated by the stimulation,
STN-HFS (pulses at 130–185 Hz, of 60–70 ms duration and
1.5–3.4 V amplitude) increases blood flow, regional cere-
bral metabolic rates and blood oxygenation [measured
using positron emission tomography (PET) or functional
magnetic resonance imaging (fMRI)] in the ipsilateral GPe
[43–45]. Similarly, in rats in vivo, STN-HFS (60–130 Hz)
provoked a significant increase of glutamate content in
both GPe and SNr, as measured using microdialysis [46,47].
This increase was amplified and remained significant
throughout the stimulation period (1 h), with maximal
effect 1 h after the end of stimulation. The glutamate con-
centration increase could correspond to activation of STN
neurons, as occurs during their pharmacological activation
by carbachol [48]. STN-LFS at 10 Hz has no effect, probably
because the increased release of glutamate caused by the
relatively small increase in activity (25%) is not detectable.
HFS and striatal dopamine release

STN-HFS can influence the activity of dopaminergic
neurons either directly [37,49] or indirectly via collaterals
www.sciencedirect.com
of SNr cells (Figure 4a). Whenever tested, STN-HFS has
been found to increase dopamine content or metabolism in
the ipsilateral striatum in control and partially dopamine-
denervated rats [50,51]. By contrast, HFS of the entope-
duncular nucleus has no effect [52]. During the STN-HFS
period (130 Hz for 1 h), the ipsilateral extracellular
content of dopamine increases by up to 200% in 6-hydroxy-
dopamine lesioned rats bearing partial destruction of the
SN pars compacta (SNc) and by less in control rats (168%)
[50]. Intraneuron dopamine turnover and tyrosine hydroxyl-
ase activity also increase [51]. These results have not been
confirmed in patients. Dopamine release is estimated in
patients as the density of free D2 receptors in the striatum,
measured using the reversible ligand [11C] raclopride in PET
experiments. Binding of this tracer is inversely proportional
to levels of extracellular dopamine [53]. After a period when
the stimulation has been turned off and L-dopa withdrawn,
STN-HFS in one side does not induce differences in
[11C]raclopride binding between the two striata [54–57].
Therefore, there is no evidence for STN stimulation inducing
dopamine release in humans.
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Figure 4. The ‘more’ hypothesis. (a) High-frequency stimulation (HFS) of the

subthalamic nucleus (STN) directly activates STN efferent axons or somata. A new

pattern that replaces the pathological one propagates orthodromically (ortho) to

the various target structures of the STN: the external and internal segments of the

pallidum (GPe and GPi), the substantia nigra pars reticulata (SNr) and pars

compacta (SNc) and the pedunculopontine nucleus (PPN). Recurrent collaterals of

SNr neurons terminate on dopaminergic neurons in the SNc and on GABAergic

neurons in the SNr. Notice that in the case of parkinsonism, dopaminergic cells and

terminals have degenerated (broken lines). Pink indicates glutamatergic or

cholinergic terminals, blue indicates GABAergic terminals, and yellow indicates

dopaminergic terminals. When axons are first activated, the HFS-driven pattern

also propagates antidromically (anti) to STN cell bodies. (b) The disrupted activity

of STN neurons recorded in a 6-hydroxydopamine-treated rat in vivo (i) [70] would

be entirely replaced during HFS by a stable HFS-driven pattern consisting of bursts

of evoked spikes (ii). The expanded trace shows the absence of spontaneous spikes

in between stimuli.
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Shortcomings of the ‘more’ hypothesis

These results suggest that HFS (i) prevents cells from
discharging their network-driven (spontaneous) activity
and (ii) replaces it by an activity entirely driven by HFS. It
can be argued that in STN slices, HFS has a different effect
from in vivo, owing to absence of the basal ganglia
circuitry. Studies in target nuclei contradict this hypo-
thesis because excitatory responses that have latencies
www.sciencedirect.com
compatible with the speed of conduction along the
subthalamo–pallidal and subthalamo–nigral pathways
are recorded. In animal models, STN-HFS increases
striatal dopamine release, but this cannot provide infor-
mation on the effect of HFS on STN neurons because of the
complexity of intra-nigral connections and the autoregu-
lation of dopaminergic neurons [58,59]. The presence of
HFS-evoked spikes during HFS could seem to contradict
the observation of an inhibitory period just after the end of
HFS. Indeed, driving of STN neurons by HFS stops once
HFS is over, but the concomitant inhibitory effect on
spontaneous activity persists for some seconds or minutes
after the end of HFS.

The hypothesis of a prokinetic rhythm

The question of how stimulation deep in the basal ganglia
restores motor function in patients suffering from Parkin-
son’s disease is important because these subcortical nuclei
have a pivotal role in encoding sensorial and cognitive
information (i.e. cortical outflow) to produce the automatic
execution of learned movements [60]. The different hypo-
theses on the mechanisms of action of HFS have very
different consequences. The inhibitory hypothesis (silenc-
ing effect) implies that HFS is a functional ablation that
‘suppresses’ STN activity from the network (i.e. ‘less’). The
idea is that no activity at the level of the STN outflow is
preferable to a noisy and disruptive output. The reverse
hypothesis, an excitatory effect, is that new evoked single
spikes introduced into the STN discharge superimpose on
the network-driven activity. LFS has exactly this effect,
and is known to be non-therapeutic [3,18]. The ‘more’
hypothesis that we propose is totally different from a
simple excitation and appears with stimulation at high
frequency. Following our initial report [21], we propose
that HFS excites the stimulated structure, evokes a
regular pattern time-locked to the stimulation, which
overrides the pathological STN activity. As a consequence,
HFS removes the STN deleterious pattern and also
introduces a new and regular pattern (Figure 3a), which
exerts a positive action on the dopamine-deficient network
(i.e. ‘more’). The need for a high frequency (R80 Hz) to
obtain the dual effect of HFS can be explained by the fact
that stimuli must be close enough to one another to allow
summation of inward Ca2C currents and to trigger Ca2C

bursts. Only bursts of 60–80 Hz spikes seem able to over-
come the spontaneous deleterious activity. As a result,
we propose that the pathological disrupted activity
recorded in the STN in vivo (Figure 4b,i) is totally
replaced by an intermittent and stable activity in the
60–80 Hz range (Figure 4b,ii).

HFS achieves its dual effect by directly activating
afferent axons, somas and efferent axons in the STN.
Activation of afferent axons inside the STN and spon-
taneous afferent synaptic activity do not have a role in
HFS, because synaptic transmission does not follow long-
term HFS and/or because its postsynaptic effects are over-
come by direct activation of STN neurons. By contrast,
activation of somas and efferent axons gives rise to the
HFS-driven activity, which is propagated othodromically
to STN terminals (Figure 4a). HFS is likely to exert a
widespread effect inside (Figures 1, 4a) and outside the
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basal ganglia network, as recently modeled [61], because
all of the basal ganglia nuclei, not just the STN, dys-
function in the parkinsonian state.

The ‘more’ hypothesis is in agreement with the concept
of the prokinetic high-frequency rhythm, first proposed
by Brown and Marsden [62]. In untreated patients and
primate models of parkinsonism, local field potentials that
represent synchronous activity in many neurons are
dominated in the STN and GPi by low-frequency oscil-
lations in the 11–30 Hz band [63–65]. Treatment with
L-dopa encourages synchronized oscillations at fre-
quencies O70 Hz [66] and concomitantly improves
parkinsonism. The reduction of a pathological 11–30 Hz
rhythm and the introduction of a high-frequency rhythm
[67,68] could provide a common mechanism for thera-
peutic effects of L-dopa and deep brain stimulation [69].

Concluding remarks

In keeping with the present understanding of how oscil-
lating networks operate, we propose that the improve-
ment generated by HFS is due to parallel non-exclusive
actions: silencing of ongoing activity and generation of an
activity pattern in the gamma range. In theory, there is
an important advantage in silencing spontaneous activity
and imposing a pattern: the signal-to-noise ratio and the
functional significance of the new signal is enhanced. The
next step will be to identify how this new HFS-driven
activity is propagated inside the basal ganglia. The fact
that the most beneficial actions are produced in the high
gamma range is interesting because it raises the issue of
links between the integrative actions of this pattern and
motor coordination.
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