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Synaptic plasticity refers to the process by which
synapses are modified in structure and function in
response to different stimuli or environmental cues.
Activity-dependent synaptic plasticity is thought to
underlie many seemingly diverse processes, such as
learning and memory, the formation of proper
synaptic connections during development and the
manifestation of pathological conditions. 

The classical models for studying activity-
dependent synaptic plasticity are long-term
potentiation (LTP) and long-term depression (LTD),
which represent, respectively, an increase and a
decrease in synaptic strength [1]. Owing to the
wide-ranging significance of long-term plasticity,
considerable efforts have been made to identify the
mechanisms by which synaptic changes are
triggered and expressed at glutamatergic synapses
[2,3]. But GABAergic interneurons also have a
crucial role in shaping the activity of their target
cells and cell populations [4]. Thus, the strength of
inhibitory synapses will also shape the
input–output relationship of neurons, the
excitability of the neuronal network and the
generation of network oscillations relevant to
behaviour. Information on long-term plasticity at
inhibitory synapses is, therefore, necessary for a full
understanding of both physiological and
pathological network plasticity.

In the past decade, long-term plasticity at
GABAergic and glycinergic synapses has been
reported in different regions of the brain. In this
review, we briefly summarize the mechanisms that
underlie these forms of synaptic plasticity and discuss
their possible functional implications.

Long-term changes in GABAergic and glycinergic

synaptic strength

GABAergic and glycinergic synapses undergo
long-term plasticity
In the past decade, LTP and LTD of inhibitory synapses
have been reported to occur in several regions of 
the brain, including the hippocampus [5–12], 
cortex [13–16], cerebellum [17–19], deep cerebellar
nucleus [20–22], lateral superior olive [23,24] and
brain stem [25,26] (Table 1). LTP of glycinergic
synapses that impinge on the Mauthner cells has 
also been reported to occur in goldfish [27–29]. 
Long-term plasticity has been observed on
pharmacologically isolated inhibitory postsynaptic
potentials (IPSPs) and inhibitory postsynaptic
currents (IPSCs) [8–10,14,23,25,26,30], and on
unitary IPSCs that are evoked by directly stimulating
interneurons [16,19,28,31]. These observations rule
out the possibility that modifications of the excitatory
inputs to interneurons underlie the long-term
changes in inhibitory synaptic transmission.

Not surprisingly, several different mechanisms
have been reported to contribute to the induction and
maintenance of inhibitory synapses (Table 1, Box 1).
A rise in intracellular Ca2+ concentration ([Ca2+]i) is
important in shaping the strength of inhibitory
synapses (Table 1). This increase in [Ca2+]i could occur
in the postsynaptic target cells (Fig. 1a–c), in the
presynaptic terminals [25] or in the neighbouring
astrocytes [31] (Fig. 1d). In the neonatal 
hippocampus [9], LTP at GABAergic synapses results
from the postsynaptic opening of voltage-dependent
Ca2+ channels (VDCCs; Fig. 1a), whereas in the 
cortex [15] and cerebellum [19] this process requires
the release of Ca2+ from postsynaptic internal 
stores (Fig. 1c). In the neonatal [10] and adult
hippocampus [7,32], LTD of GABAergic synapses is
triggered by an influx of Ca2+ through NMDA-gated
channels. Notably, the initial depolarization that
leads to removal of the voltage-dependent Mg2+ block
of NMDA channels during the conditioning protocol
depends on the developmental stage (Fig. 1a,b): it is
provided by GABAA receptors in neonates [10] and by
AMPA receptors in adults [7]. 

At inhibitory synapses in the deep cerebellar
nuclei, both LTP and LTD can be induced by different
conditioning protocols [20,22]. A unique property of
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cells in the deep cerebellar nuclei is a predominant
post-inhibitory rebound depolarization and
associated spike bursting. In these cells, the number
of spikes and the relative amounts of Ca2+ that enter
the postsynaptic neurons during the post-inhibitory
rebound depolarization seem to determine whether
LTP or LTD is induced [33]. In the neonatal rat
hippocampus, the same conditioning protocol can lead
to either LTP or LTD at GABAergic synapses,
depending on whether NMDA receptors have been
activated during the tetanic stimulation [8] (Fig. 1a).
Given that both forms of plasticity require a
postsynaptic rise in [Ca2+]i [8], these observations
suggest that the direction of synaptic change is
determined by the source of the Ca2+ influx: that is,
VDCCs for LTP [9], and NMDA channels for LTD [10].
It is not yet clear, however, whether the same
GABAergic synapses are able to demonstrate both
LTP and LTD. GABAergic synapses are likely to
undergo different forms of plasticity depending on
their localization along the somatic–dendritic axis [6].
For example, the dendritic localization of NMDA
receptors suggests that NMDA-dependent plasticity
is likely to occur preferentially at dendritic, rather

than at somatic, GABAergic synapses. Future
experiments will reveal how interneurons that have
been identified anatomically behave in response to
the same conditioning protocol.

Long-term plasticity is generated by physiologically
relevant stimuli
Much of the interest in long-term plasticity 
research stems from the possibility that LTP and
LTD might be involved in different functions. 
The relevance of the conditioning protocol to
physiological or pathological conditions must,
therefore, be taken into account to gain insight into
the role of long-term plasticity. 

Compelling evidence now suggests that
conditioning protocols that are relevant to
physiological or pathological situations can induce
plasticity at GABAergic and glycinergic synapses. 
For example, Korn and co-workers have shown that
auditory stimulations in goldfish can trigger LTP of
inhibitory synapses in vivo [29] that shares similar
properties with LTP induced by tetanic stimulation
[27,28,30]. In the neonatal rat hippocampus,
Ca2+-dependent LTP at GABAergic synapses can be
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Table 1. GABAergic and glycinergic synapses undergo long-term change in synaptic efficacy
a

Structure Age Conditioning protocol Effect Ca
2+

 source Modification Refs

Rat neocortex, pyramidal P14–P16 Coincident pre- and postsynaptic LTD Postsynaptic ND [16]
  cells   firing

Delayed pre- and postsynaptic firing LTP Postsynaptic ND
Rat visual cortex, pyramidal P20–P30 TS with CNQX and bicuculline LTD Postsynaptic NMDA receptors ND [13–15]
  cells TS with CNQX and APV LTP Postsynaptic Ins(1,4,5)P3-Ca2+ ND

  stores
Rat hippocampus, CA3 P2–P4 TS with CNQX LTD Postsynaptic NMDA receptors ↑  CV of eIPSC [8–12]
  pyramidal cells   and internal Ca2+ stores ↓  Sr2+-induced sIPSC

  frequency
P0–P8 TS with CNQX and APV LTP Postsynaptic VDCCs ↑  mIPSC frequency

DP with CNQX and APV LTP ND Reveals latent
GABAergic
  connections

Guinea pig hippocampus, >P30 TS LTD Postsynaptic NMDA receptors ↓  IGABA-A amplitude [6,7,32]
  CA1 pyramidal cells
Rat hippocampus, CA1 P8–P20 Interneuron firing LTP GABAB-induced Ca2+ rise in ↓  uIPSC failure [31]
  pyramidal cells   astrocytes ↑  mIPSC frequency
Rat deep cerebellar nuclei P7–P9 LFS with DNQX LTD Postsynaptic NMDA receptors ↓  IGABA-A amplitude [21,22,33]

DP with DNQX and APV LTP Postsynaptic VDCCs ↑  mIPSC frequency
ND ↑  IGABA-A amplitude

P11–P15 RD-induced spikes (<5 spikes) LTD Postsynaptic VDCCs ND
RD-induced spikes (>5 spikes) LTP Postsynaptic VDCCs ND

Rat cerebellum, Purkinje P12–P16 DP RP Postsynaptic VDCCs and ↑  IGABA-A amplitude [17–19]
  cells   Ins(1,4,5)P3-Ca2+ stores ↑  mIPSC amplitude
Gerbil lateral superior olive P7–P12 LFS LTD Postsynaptic ND [23,24]
Rat nucleus of solitary tract P17–P36 TS with CNQX and APV LTP Presynaptic VDCCs ↑  CV of eIPSC [25]
Goldfish Mauthner cells Adult TS with CNQX and APV LTP Postsynaptic ↑  CV of eIPSC [27–29]

Sound stimulation ND Reveals latent
  glycinergic
  connections

aAbbreviations: APV, D-amino-2-5-phosphonovalerate; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; CV, coefficient of variation; DNQX, 6,7-dinitroquinozaline-2,3-(1H,4H)-
dione, DP, depolarizing pulses; IGABA-A, postsynaptic GABAA-receptor-mediated current; Ins(1,4,5)P3, inositol (1,4,5)-triphosphate; IPSC, inhibitory postsynaptic current (e,
evoked; m, miniature; s, spontaneous; u, unitary); LFS, low-frequency stimulation; LTD, long-term depression; LTP, long-term potentiation; ND, not determined; P,
postnatal day; RD, rebound depression; RD, rebound depression; RP, rebound potentiation; Sr2+, strontium; TS, tetanic stimulation; VDCCs, voltage-dependent Ca2+

channel. Upward arrows indicate an increase and downward arrows, a decrease.
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induced by repeated bursts of action potentials
applied at a low frequency to CA3 pyramidal 
cells [9,12]. This conditioning protocol is related to
the sort of activity that neonatal CA3 pyramidal cells
might experience in vivo through the endogenous
bursting properties of these cells [34] or through
network-driven synaptic activity that is present at
early stages of development [35,36]. 

The fact that back-propagating action potentials
might serve as an associative signal to induce LTP
and LTD at neocortical GABAergic synapses [16]
strengthens further the idea that physiological
stimuli can lead to long-lasting modifications at
synapses. Thus, temporally correlated spiking
activity in a connected pyramidal cell–interneuron
pairing can lead to long-term plasticity at GABAergic

Review

When an action potential arrives at the presynaptic terminals,
neurotransmitter is released into the synaptic cleft, where it interacts
with specific postsynaptic receptors to generate a postsynaptic current.
If the amount of neurotransmitter that is released approaches a
concentration that saturates the postsynaptic receptors, then the total
number and properties of available postsynaptic receptors at the
functional synapse will be important limiting factors. 

In the adult dentate gyrus, a direct relationship has been found
between the number of synaptic GABAA receptors and the quantal size at
potentiated GABAergic synapses in an experimental model of temporal
lobe epilepsy [a]. In this model, insertion of new GABAA receptors
underlies the increase in amplitude of unitary inhibitory postsynaptic
currents (IPSCs). In addition, blocking clathrin-dependent endocytosis of
GABAA receptors causes a large increase in quantal size in cultured
hippocampal cells [b], and insulin can induce a translocation of GABAA
receptors to the surface, thereby increasing the amplitude of miniature
IPSCs in cultured neurons [c].

The functional properties of postsynaptic receptors are also crucial
for the efficacy of inhibitory synapses. In the CA1 region of the adult
hippocampus, high-frequency stimulation induces NMDA-dependent
long-term depression (LTD) of GABAergic synapses [d,e]. It has been
suggested that this plasticity can be accounted for by a decrease in the
efficacy of postsynaptic GABAA receptors, which is caused by activation
of the Ca2+-sensitive phosphatase calcineurin [d,e]. In the cerebellum,
the expression of long-term potentiation (LTP) also seems to be a
postsynaptic mechanism [f,g] and requires the activation of
Ca2+–calmodulin-dependent kinase II and protein kinase A [h]. In the
deep cerebellar nuclei, LTD of GABAergic synapses requires the
activation of postsynaptic phosphatase activity [i].

Recent experimental evidence indicates that receptor saturation might
not occur at all sites of neurotransmitter release [j]. If the concentration of
neurotransmitter is not high enough to saturate the postsynaptic
receptors, then modifications in the probability of neurotransmitter
release or in the number of functional releasing sites might also explain
how changes in synaptic efficacy are mediated. These hypotheses are
supported by several studies. Thus, long-term plasticity at GABAergic and
glycinergic synapses is associated with (1) a modification in the
coefficient of variation of evoked IPSCs [k–m], (2) a decrease in the failure
probability of unitary IPSCs [k,n], (3) a modification in the frequency of
miniature IPSCs with no change in their amplitude [n–p], and 
(4) a modification in the frequency, but not amplitude, of asynchronous
quantal IPSCs evoked in the presence of Sr2+ [m]. 

A modified number of functional neurotransmitter-releasing sites
has been demonstrated directly in goldfish [q] and in neonatal rat
hippocampus [r]. Modification of the number of functional releasing
sites might occur by a mechanism involving either ‘all-or-none’
clustering and declustering of postsynaptic receptors, or a presynaptic
switching on or off of neurotransmitter release. In support of the latter
hypothesis, it has been shown that ∼ 30% of postsynaptic GABAA
receptors are associated with nonfunctional presynaptic terminals in
hippocampal cultures [s], suggesting the existence of presynaptically
silent GABAergic synapses.

If a modification in the probability of neurotransmitter release is
involved, then the information should be transmitted back from the
postsynaptic cell to the inhibitory presynaptic terminals. In the adult
hippocampus, a retrograde messenger released by astrocytes has been
shown to participate in long-lasting plasticity at GABAergic synapses [n].
Thus, repetitive firing of a single interneuron leads to an increase in the
probability of GABA release by the stimulated interneuron. This effect is
caused by the activation of GABAB receptors on neighbouring astrocytes
by GABA released during the repetitive firing on the interneuron.

Activation of these receptors leads to a postsynaptic rise in intracellular
Ca2+ concentration that triggers the release of a retrograde messenger,
resulting in an increase in GABA release.
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inhibitory synapses. As reported for transmission at
glutamatergic synapses [37,38], the direction of the
change in GABAergic synapses depends on the timing
between pre- and postsynaptic firing [16]. 

Functional and pathological relevance of long-term

plasticity

Long-term plasticity and behavioural repercussion
Because GABAergic interneurons are involved in the
induction and maintenance of behaviourally relevant

network oscillations in the adult brain [4,39], one can
speculate that long-term plasticity will alter the
generation of such rhythms and lead to behavioural
modifications. At present, there is no direct evidence
in favour of this hypothesis. However, a recent study
carried out in the locust olfactory system has shown
that synaptic inhibition can change over the course of
repeated odour stimulations, with functionally
relevant consequences [40]. Although indirect, this
study suggests that modifications in inhibitory
synaptic strength might alter the patterns of activity
generated by a neuronal network, probably leading to
behavioural change. 

A behavioural consequence of long-term plasticity
at glycinergic synapses that impinge onto Mauthner
cells has been demonstrated recently in goldfish [29].
Activation of glycinergic interneurons by excitatory
synapses of the VIIIth cranial nerve inhibits the
contralateral Mauthner cell. Because activation of
Mauthner cell system by sound leads to an escape
reaction that orients the fish away from the potential
predator [41], it was speculated that plasticity at
glycinergic synapses [27,28,30] might affect this
escape reflex. Thus, LTP was generated at glycinergic
synapses in vivo by sounds that were below the
threshold for escape and delivered at the appropriate
frequency [29]. After this conditioning protocol, the
probability of escape was, indeed, decreased, whereas
the basic properties of the escape reflex were not
modified (Fig. 2). The conditioning protocol used in
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Fig. 1. A postsynaptic rise in intracellular Ca2+ concentration ([Ca2+]I) is
required to induce long-term plasticity at GABAergic synapses. (a) In the
neonatal rat hippocampus, activation of GABAA receptors triggers
Clefflux and membrane depolarization. This depolarization leads to the
activation of voltage-dependent Ca2+ channels (VDCC), which results in
removal of the Mg2+ block from NMDA-receptor channels. Influx of Ca2+

through VDCCs leads to long-term potentiation of GABAergic synapses
(LTP GABAA), whereas influx of Ca2+ through NMDA-receptor channels
leads to long-term depression of these synapses (LTD GABAA) [10].
(b) In the adult rat hippocampus, NMDA-dependent LTD can be induced
at GABAergic synapses. At this later stage, however, activation of AMPA
receptors provides the depolarization that leads to the unblocking of
NMDA-receptor channels [7]. (c) In the neonatal rat visual cortex, the
rise in intracellular Ca2+ concentration ([Ca2+]i) relies on the activation of
α1 adrenoceptors leading, via G protein (G) and phospholipase C (PLC),
to the formation of inositol (1,4,5)-triphosphate (IP3). This effect is
facilitated by the activation of postsynaptic GABAB receptors [15].
(d) In the adult hippocampus, GABA released from GABAergic
terminals activates GABAA receptors on pyramidal cells, and also
GABAB receptors located on neighbouring astrocytes. Activation of
these GABAB receptors leads to a postsynaptic rise in [Ca2+]i that
triggers the release of a retrograde messenger, probably glutamate,
leading to an increase in the probability of GABA release [31]. 
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this study was sufficient to produce LTP of glycinergic
synapses but the excitatory inputs onto Mauthner
cells were modified only inefficiently [42,43]. In
addition, the most effective frequency of sounds that
produced the LTP was the one that had the largest
effect on behaviour, strengthening further the link
between LTP at glycinergic synapses and
behavioural modification.

Failure to inhibit GABAergic synapses and
epileptogenesis
The first report of long-term plasticity at GABAergic
synapse was provided by Stelzer et al. [5], who showed
that GABAergic synapses also undergo NMDA-
dependent LTD after application of repeated
electrical stimulations to hippocampal slices [5]. This
LTD was thought to contribute, at least in part, to the
generation of an epileptiform activity observed after
the conditioning protocol. This hypothesis has gained
further support from a study by Miles and Wong [44].
Using dual recordings of CA3 pyramidal neurons on
hippocampal slices, these researchers showed that
recurrent inhibition of GABAergic synapses is
reduced after the application of high-frequency
stimulation, although they did not identify the site of
modification in the inhibitory network. This decrease
in efficacy of GABAergic synapses revealed latent
polysynaptic excitatory connections and increased the
synchronization of excitatory postsynaptic potentials
(EPSPs) between the recorded pyramidal cells. 

More recently, it has been reported that LTD of
GABAergic synaptic transmission can also alter the
probability of target neurons firing action potentials.
High-frequency stimulation leads to LTP at
glutamatergic synapses and increases the ability of
the EPSP to trigger an action potential [45]. This
increase in EPSP-to-spike coupling seems to be

secondary, at least in part, to an NMDA-dependent
LTD of inhibitory GABAergic synapses [32].
Therefore, long-term plasticity of inhibitory synapses
can affect the output of the target neurons, thereby
changing the excitability of neuronal networks.

To understand fully the functional and
pathological implications of plasticity at inhibitory
synapses, one should consider the heterogeneity of
GABAergic interneurons [4]. In the adult
hippocampus, different interneurons impinge
precisely on specified areas and differentially control
the excitability of their target cells. For example,
dendritic inhibition controls the generation of Ca2+

spikes and shunts excitatory synaptic transmission,
whereas somatic inhibition regulates the generation
of Na+ spikes [46,47]. Thus, to understand completely
the overall effect of long-term plasticity at GABAergic
synapses on the activity generated by a neuronal
network, the interneuron underlying this plasticity
should be identified morphologically.

Long-term plasticity and establishing appropriate
inhibitory synaptic connections
Several lines of evidence support the idea that
spontaneous neuronal activity is necessary for the full
development of inhibitory circuitry [48–53]. It is
tempting to speculate that the mechanisms involved
in developing the inhibitory circuit are similar to
those required for long-term plasticity, as has been
proposed for excitatory synapses [54–56].

However, the validity of this hypothesis depends
on at least two assumptions. First, long-term
plasticity should be induced in a restricted period of
development that precedes, or corresponds to, the
stage of functional synaptic maturation. This has
been shown in several developing structures,
including the visual cortex [14], hippocampus [8,9]
and auditory system [23]. Although the period during
which plasticity can be induced differs from one
structure to another, it must match closely the crucial
window of functional maturation for a specific
structure. In the lateral superior olive, the age at
which LTD is observed at glycinergic synapses
correlates with the period during which inhibitory
synapses are eliminated [57]. This suggests that LTD
at glycinergic synapses might contribute to the
remodelling of inhibitory synaptic pathways, as has
been proposed to occur at the neuromuscular junction
[54,55]. In the neonatal rat hippocampus, LTP at
GABAergic synapses induced by the postsynaptic
firing or activation of GABAA receptors is restricted to
the first week of life [8,12], which coincides with the
functional maturation of GABAergic synapses [58]
(Fig. 3a). This period also coincides with the point at
which activation of GABAA receptors leads to a
membrane depolarization and a postsynaptic rise in
[Ca2+]i: both processes are required to induce
long-term plasticity at GABAergic synapses in the
developing hippocampus [9,10]. Second, long-term
plasticity should mimic the functional maturation of
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Fig. 2. Behavioural consequence of long-term potentiation at glycinergic synapses. (a) Inhibitory
postsynaptic current evoked by stimulation of the VIIIth cranial nerve before (top) and after (bottom)
after a four-minute application of repeated sounds. Scale bars, 50 nA, 10 ms. (b) Escape evoked by a
falling ball in control (top) and conditioned (bottom) goldfish. Time zero indicates the point at which
the ball hit the water. Modified, with permission, from Ref. [29],  (1998) Macmillan Publishers Ltd
(www.nature.com/nature).
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inhibitory synapses that occurs in situ. At very early
stages of development, hippocampal pyramidal
neurons are ‘silent’: that is, they show neither
spontaneous nor evoked synaptic activity [59]. On
these hippocampal cells, the first functional synapses
will be GABAergic [59]. At birth, the conditioning
protocol that leads to LTP of GABAergic synapses can
induce the appearance of spontaneous GABAergic
synaptic activity in previously silent pyramidal 
cells [12] (Fig. 3b). Thus, the conditioning protocol
that leads to LTP can mimic the functional
maturation of the GABAergic synapses that occurs in
the rat hippocampus [59].

The above observations support the hypothesis that
activity-dependent maturation and long-term
plasticity are linked, although correlating factors do
not demonstrate that the link is causal. Understanding
the cellular mechanisms that are involved in both
processes will strengthen this link. Neurotrophins are
good candidates for common cellular players. For
example, activity blockade reduces the number of
inhibitory synapses – an effect that is restored by brain
derived neurotrophic factor (BDNF) or neurotrophin 4
(NT-4) [52,53]. Neurotrophins can also enhance or
reduce inhibitory synaptic transmission [60–63], and a
recent study suggests that they are involved in
inducing LTD at glycinergic synapses in the developing
auditory brain stem [24]. They could, therefore,
represent the signal that links long-term plasticity and
activity-dependent maturation of inhibitory synapses. 

Further experiments that might uncover links
between long-term plasticity and the activity-
dependent functional maturation and refinement of
inhibitory synapses include characterization of the
synaptic activity involved in development of
inhibitory synaptic connections, and determining
whether this activity can induce long-term plasticity
at developing synapses. 

Conclusion

For a long time, inhibitory synapses have been
considered to be important in setting the threshold for
synaptic changes at excitatory synapses. The data
reviewed here indicate that inhibitory synapses
themselves undergo long-term plasticity in different
regions of the brain. Not surprisingly, several
different mechanisms have been reported to
contribute to the induction and persistence of these
types of synapse. But, in common with plasticity at
excitatory synapses, all forms of plasticity at
inhibitory synapses are triggered by a rise in [Ca2+]i.
Thus, any conditioning protocol that leads to
long-term changes at excitatory synapses is likely to
trigger long-term plasticity at inhibitory synapses. 
In future studies, it will be essential to consider
plasticity at both excitatory and inhibitory synapses
to understand fully the roles and consequences of
activity-dependent plasticity in the development and
function of neuronal networks.
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Fig. 3. Long-term plasticity and functional maturation of GABAergic
synapses. (a) The probability of triggering long-term potentiation at
GABAergic synapses by repeated postsynaptic firing of CA3 pyramidal
neurons is restricted to the first week of life in the rat hippocampus
(blue graph). This period is concomitant with the functional maturation of
GABAergic synapses, as judged by the progressive decrease in the
inter-event interval (IEI) of spontaneous GABA-mediated postsynaptic
currents (sGABAA-PSCs) (red graph). This period also corresponds with
the developmental window in which activation of GABAA receptors leads
to a membrane depolarization (blue shading). Modified, with permission,
from Ref. [12]. (b) Repeated postsynaptic firing (20 times, at 0.1 Hz) of a
neonatal CA3 pyramidal neurons leads to the appearance of spontaneous
sGABAA-PSCs. Reproduced, with permission, from Ref. [12].
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