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Abstract

The most commonly used method to analyze colocalization of fluorescent signal in paired images is based on superimposition of image
(“merging”) and visual inspection. A method based on the comparison of the mean deviation of fluorescent signal intensity has recently
been proposed to quantify colocalization within a user-defined area [Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF. A syntaxin 1,
Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosc
2004;24:4070-81]. Unfortunately, the latter quantification method does not provide a spatial representation of the correlation between the
two fluorescent signals. Here we propose a new method that combines quantification and imaging of colocalization. We describe an algorithr
based on edge detection and calculation of signal intensity deviation. The method is illustrated and validated on both simulated images an
experimental data. This new and automated method calculates a correlatior ipgeand generates an image of the correlated signals from
the two original images. In addition to help in comparing and quantifying colocalization between two fluorescent stainings, this method can
be adapted to measure the distribution of ions, proteins, organelles and cells in a large array of techniques.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction 2009 (a.k.a. “merging”). This representation is based on
the superimposition of fluorescent signals in two (or three)
Imaging of fluorescent signals is widely used in the superimposed layers. Itallows a binary estimation of whether
field of life sciences to investigate the localization of the two fluorescent signals occur within the same or in dif-
ions, proteins, organelles and cells in a large array of ferent regions. The main advantage of “merging”, beside its
techniques (e.g. immunocytochemistry, calcium imaging, easiness, isthatit preserves spatial information (contours and
immunohistochemistry, etc.). An often-asked question is shape of the observed object). However “merging” is subject
whether two partners of interest are concentrated in the to the perception of the investigator and forbids any quantifi-
same domains, in other words whether they are colocalizedcation. To quantify colocalization, the main approach is based
or not. Signals are colocalized when they are observedon calculating the Pearson’s correlation coefficient,($ee
in overlapping area and when their intensities vary in Section2) (Manders et al., 1992 This correlation index is
synchrony within a defined region. The most classical useful for quantification but does not provide any information
approach to determine the colocalization of fluorescent concerning the localization of both signals of interest. None
markers is based on the “dye-overlay method! ¢t al., of these methods combine the exploration of the two criteria
that defines colocalization (i.e. overlapping and co-variation).

* Corresponding author. Tel.: +33 5 57 57 40 95; fax: +33 557574082, LI €tal. (2004)have proposed a method named “intensity
E-mail addressfjaskol@pcs.u-bordeaux2.fr (F. Jaskolski). correlation analysis” that permits to quantify the colocaliza-

0165-0270/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jneumeth.2005.01.012



F. Jaskolski et al. / Journal of Neuroscience Methods 146 (2005) 42—-49 43

tion of fluorescent signals. This method is derived from the anti-rabbit Alexa 568 and 488 conjugated IgGs (#A-11011
measure of the deviation from the mean intensity for each and #A-11001, Molecular Probes, OR, USA), anti-mouse
pixel and for both signals in paired images, and yields a Alexa 568 and 488 conjugated IgGs (@§/ml, A-11008
global correlation index for the paired images (like Pearson’s and A-11004, Molecular Probes).

correlation index t”). The resulting single value can be used

to quantify the correlation between the two original images 2 3. |mage acquisition

but the spatial information (i.e. “the image”) is still lost.

Lately, another automated method to quantify colocalization  confocal images were acquired on a Leica TCS SP2 mi-
has been proposeCéstes et al., 2004 This procedure  croscope. The exposure settings and gain of laser were kept
is based on spatial statistics and enables quantification bythe same for each condition. Ten fields were acquired by con-

thresholding the correlation of paired pixels. dition, a single focal plane by field (Airy 1).
Here, we propose a modification of the “intensity correla-

tion analysis” methodL( et al., 2004. Our method permits
the quantification of correlation while preserving the spatial
information by evaluating correlation between pairs of indi-
vidual pixels rather than between global images, and thus im-

age the distribution of the degree of correlation for each pixel. ware (MathWorks, Natick, MA, USA). The Matlab

This new mgthod Is setto deﬁn(_a reg|ons.of |ntgrest (RO|S) n script is available athttp://www.synapse.u-bordeaux2.fr/
both paired images, create a single region to investigate the

signal correlation, and calculate the correlation image, the pagesperso/jaskolski.htm
overlapping fraction and an appropriate index of correlation.
Correlation images provide a cross view of biological com-
partments and intensity variations revealing what was hidden ZNb(a —a)b - g)
in eye-based exploration. We tested our method on simulatedPearson’'s = a}v 1

images to explore a wide range of colocalized combinations (N = Dlowo)
and put it to the test on experimental data. This useful auto- 8x is the variance fox.
mated tool reduces as much as possible user-introduced bi-

ases and enables quantification and imaging of colocalization

of two fluorescent signals. 3. Results

2.4. Numeric treatment and algorithm generation

Image analysis, algorithm generation, statistical analysis
and simulations were performed under MATLAB 6 soft-

2.5. Supplementary formulas

3.1. A method to select regions of interest based on edge
2. Methods detection by derivate approximation

2.1. Hippocampal cultures Before evaluating colocalization of two stainings in paired
images, it is necessary to determine the relevant “regions of
Primary cultures of hippocampal neurons were obtained interest” (ROIs) in both images in order to separate signal
from 1-day-old pups of C57-BL/6 mice. Hippocampi were from background but also to determine a common region for
dissociated with papain followed by mechanical trituration bothimagesinwhich putative signal fluctuations mightbe rel-
and plated at 50,000 cells/émin MEM-EAGLE supple- evant. The most common approach is background exclusion
mented with 0.5%-glucose, 0.1 mg/mltransferrin, 2&/ml based on a “manual intensity threshold” where the threshold
insulin, 2mM Glutamax (Life Technologies, France) and can be subjectively estimated or calculated as a product of the
5 pg/ml gentamycin; 2% B-27 (Sigma, MO, USA) ang./ mean background intensitygskolski et al., 2004; Osten et

cytosine arabinoside were added 3 days after plating. al., 200Q. This simple method is user-based and introduces
obvious biases that may compromise the quantification of
2.2. Immunostaining the resulting processed images. In order to reduce as much

as possible such biases, we propose to use an approach based

Cells were fixed in PFA (4%), and kept in PBS added on the detection of sighal edges by a “Sobel filt&¥bfzales
with 0.3% BSA and 0.05% saponin during the steps that and Woods, 2002 The method uses derivate approximation:
require membrane permeabilisation. Epitopes were detectednflections in the derivate occur when signal increases or de-
using monoclonal anti-MAP2 antibody (Ab) (1:500, #HM- creases with steep slopdsd. 1A). Derivate approximation
2, Sigma), polyclonal anti-MAP2 Ab (1:500, Peninsula is performed using a two-dimensional convolution with “So-
Laboratories Europe), polyclonal anti-VGlutl Ab (1:500) bel's kernels” Fig. 2B) (Yoshigi et al., 200R A threshold is
(Herzog et al., 2001 monoclonal anti-EEA1 Ab (1:500, BD  then set in the distribution of local derivates to surround sig-
Transduction Laboratories) and a monoclonal anti-GM1300 nal delimited by equal derivate values. Surrounded fields are
Ab (1:500, BD Transduction Laboratories) incubated for filled to generate binary mask images. The ROI are obtained
1h at RT. Secondary Ab are incubated for 1 h at@pAb by multiplying the original image by the mask image. The
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Sample images the ROI detected in the corresponding (“paired”) image. To
circumvent this problem we used a simple Boolean operation
(“OR") in order to generate a single ROI that encompasses
the relevant regions of both images. We can now define a
single territory from a pair of images and use it to explore
the correlation of both signals within the shared ROI. Finally,
other methods like the “manual intensity threshold” can be
used to define ROIs. The use of edge detection methods is
not required to apply the correlation analysis method.

Edge Detection Sobel’s kernels

/ ]T' arx) |-

k. Original Image

.

)

'---."?"-'g:‘. SN
L2

dtay) |

oy

arey)
(A)

- Outlined Image J €
: s

(B)

Fig. 1. Use of derivate approximation to define ROI. (A) Line-sgaaxis)

of 30 pixels among an image of fluorescence across a bright dot (black, ob-3 2. Quantification and visualization of colocalized
tain from image in C) and its derivate approximation (red). Red lines indicate fluorescent signals

how derivate approximation can be used to define the edges of the ROI. (B)
“Sobel’s kernels” successively used to calculate the derivate approximation.
(C) Top image: crop of a stained neuron (immunostaining of surface ex-  Recently,Li et al. (2004)have proposed an alternative
pressed glutamate receptors); bottom panel: corresponding outlined imageto the classical “dye-overlay” method, “intensity correlation
after edge detection with “Sobel's kernels”. analysis”, which allows quantitative analysis of colocalized
fluorescent signals. This method assumes that the intensity of
threshold can be set as a product of the mean derivate in thawo colocalized signals vary in synchrony over the selected
non-relevant background regions. This method allows the de-image. It measures the mean intensity deviation in each pixel
termination of ROI with low user biaseBig. 1C). ROIsare  of the paired images and calculates the sum of the product of
thus defined for both images. In the case of no colocalization, mean deviation over the selected ROI. The resulting single
the ROI determined in the first image will be excluded from value is an index that reflects the global intensity of corre-

nMDP Calculation
(Ia,,1a) (Ib, 1)
nMDP, | = ————————
M (la,, T (Ib,, -1b)
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Fig. 2. Quantification and visualization of colocalized fluorescent signals.
(A) Formula for nMDP calculation. X’ and “y” correspond to pixel co-
ordinates, I3” is the intensity in image “a” for the given pixel, same for
“Ip", barred 13" and “l,” are mean intensity values across respective im-
ages (in the defined common ROI). Bracket expressions indexed “max” are
the maximum mean deviations calculated in each image. (B) Generation o
images nMDP starting with two sets of simulated images: a colocalized set
(top row) and a not colocalized set (bottom row). (C) Distribution of nMDP
values for the colocalized condition (red) and the not colocalized condition
(blue) among the nMDP scale-0.5 to 0.5). This scale is combined with

an appropriate lookup table, from black to white in hot colours for positive
nMDP values, in cold blue variations for negative nMDP values. The formula
for l¢orr calculation as the fraction of positive nMDP values)(divided by

the total calculated nMDP values;(+ny) is also given.

lation between the two signals for the whole image. Other
methods expressing the correlation in two images by a single
value already existManders et al., 199Ze.g. Pearson’s cor-
relation index, see Secti@ and although they can provide a
guantification of correlation they most notably share the dis-
advantage of losing spatial information. Ideally, one would
like to implement a method that permits the quantification
of correlation while preserving the spatial information over
the paired images. Images are space functions of gray value
intensity that we processed as matrix of entangled triplets:
andy positions and as the gray value intensity,( inten-

sity in image a). We first calculated the mean intensity for
both signals (a and b) over the ROI, and the mean devia-
tion product for the two signals { — I5)(Ip — Ip)) for each

set of &, y) coordinates. In order to compare series of im-
ages, we normalized these values by dividing with the prod-
uct of maximum mean deviations and we obtained for each
set of &, y) coordinate the “normalized mean deviation prod-
uct” ("MDP = (Ia — Ia)(Ib — Ib)/(Tamax— Ia)(Zomax— b))

(Fig. 2A). We then generated an image displaying the spa-
tial distribution of calculated nMDP values (image nMDP,
Fig. 2B) with an appropriate lookup table. The nMDP in-
dex varies from—1 to 1, where negative values represent
non-correlated pixels while positive values indicate corre-
lated pixels Fig. 2C). The absolute value depends on the
deviation to the mean of both andl, and thus quantifies the

; relationship between these values.

We first tested this method on artificial images generated
to simulate either strong colocalization or no colocalization.
As shown inFig. 2, correlated pixels appear in “hot” colours
(nMDP >0) and non-correlated pixels in “cold” colours
(nMDP <0). The “black ring” in the colocalized image
nMDP represents the region where the values tend toward
the mean. It must be noted that pixels out of the ROI are



F. Jaskolski et al. / Journal of Neuroscience Methods 146 (2005) 42—-49 45
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Fig. 3. Algorithm: schematic representation of the successive steps of the automated algorithm that generate image nMDP (blue box) from gegjinal ima
(green box). A third arm calculates the merged image (pink box).

represented in black in the image nMDP. Because a singleThe Gaussian signal was randomly positioned in each image
index for each image pair is useful to sample and compare and the set of images was analyzed with the automated algo-
different conditions, we calculated the fraction of positively rithm (without background selection)o,r was plotted as a
correlated pixels among the image nMDP. This valggy, function of the overlapping fraction after 10,000 successive
reflects the distribution of nMDP valueBig. 2C). simulations Fig. 4). The overlapping fraction corresponds
to the number of pixels charred by the two first defined ROIs
divided by the size in pixel of the complete ROI generated by
the Boolean operator. Several possible distribution of both
signals ranging from strong colocalizatidfig. 4A) to adja-

cent not overlappingHig. 4D) were explored. As expected,
lcorr increased when the signals overlapped. Two regions
(marked in gray) were not explored by the simulation: they
correspond to 1/overlapping events that are not correlated (an
impossible case) and 2/correlated images that only slightly
overlap. This last case can be observed when the simulation
is performed with two 2D Gaussians per image (data not
show). It corresponds to cases where the calculated ROIs

3.3. Algorithm

In an image, gray values are discretely sampled from
0 to 255 for 8-bit indexed images and from 0 to 4095 in
12-bit indexed images. These variables cannot be used for
derivate approximation or nMDP calculation (irrationals and
negative numbers are generated). To overcome this problem
we worked with matrices rather than images by converting
8-bitindexed images to three-dimensional matrices of double .
floating variables. We generated an algorithm using Matlab
6 software (MathWorks, Natick, MA, USA) that automates
the successive steps required for the quantification of the
colocalization of fluorescent signals in paired images using  Simulation of 10 000 aleatory Gaussian image pairs
our nMDP algorithm Fig. 3, blue box). The function first | corr Images nMD
opens the imaged-{g. 3, green box), asks for background 1 Correlated not overlapping " A
selection then calculates the ROl in each image, applies the wild ® @
Boolean operator “OR” and calculates nMDP values. We 0.8 '
have added in the algorithm an arm that calculates the merged e B B
image Fig. 3, pink box). The function also displays two ":,‘,- @
values,lcorr and the overlapping fraction of the two original me
ROIs (ROL and RO},). This procedure can be adapted to any G c
software that allows matrix calculation and visualization. 0,4 @
The Matlab script is available ahttp://www.synapse.u-
bordeaux2.fr/pagespersol/jaskolski.htm D

0,21
3.4. |corr distribution . Overlapping not Correlated (E 0_ -
0 20 40 60 80 100
Next, we evaluated how the correlation indebof) Overlapping in %

compares to the overlapping fraction and how it is dis- _ _ _

. . . Fig. 4. Scatter plotlcor vs. the overlapping fraction calculated for 10,000
t”t?“ted a_mong all pOSSIbIg positions. Thus, _We generated image pairs. Each image is composed of a 2D Gaussian curve randomly
pairs of images (6% 62 pixels) each containing a two  positioned. Left column displays four examples ofimages nMDP from strong
dimension Gaussian signal of gray values £331 pixels). colocalization (A) to close apposition (D) obtained during the simulation.
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have different sizes so that the relative overlapping fraction However, “reasonable” intensity dependant noise (i.e. noise

is weak but signals are correlated within the whole explored variance <200) does not affect the relation betwégn

region. An interesting observation is that the minimLygy, and the overlapping fractior-{g. 5B), strongly suggesting

is measured for 10% overlapping signals and that it slightly that the nMDP method is not critically affected by intensity

increases when the overlapping fraction tends to O. In this dependent noise.

configuration most pixels are under the mean in both images

so that the resulting nMDP is positive ahg,r increases. In  3.5. Experimental test

order to obtain am.q value around 0, the signals must be in

opposite phases in the entire explored territory (we assume  Finally, we tested our method on genuine images obtained

that this would be an extremely rare case). from cultured neurons stained with two fluorescent markers.
Because experimental images are noisy, we next testedCultured mouse hippocampal neurons (21 DIV) were fixed

how different types of noise alter the nMDP correlation anal- and immunostained with various antibodies in order to gen-

ysis. Two types of noise were added to the simulated images: aerate representative fluorescent signals. First, to obtain strong

uniform Poisson noiseéPqeisd corresponding to background  colocalization, neurons were labeled with two different an-

and an intensity dependant noise (classically “light noise”). tibodies directed against the same protein, the microtubule
WhenPniseis added to the two dimensions Gaussian sig- associated protein 2 (MAP2, a somato-dendritic marker), a

nal, the correlation betweeg,r and the overlapping fraction  rabbit polyclonal antibody and a mouse monoclonal antibody.

is maintained until the variance &foise reaches the order  Second, we labeled MAP2 together with the synaptic vesicu-

of magnitude of the signal variancEig. 5A). The limit ob- lar glutamate transporter 1 (VGIUT1, a presynaptic marker of

served whetPgisevariance reaches signal variance is indeed glutamatergic synapsesd)i¢rzog et al., 2001 Third, we co-

due to the sensitivity of the Sobel's edge detection method stained MAP2 and the early endosomal Rab5 effector protein

to background. In this case, background can be mistaken for(EEA1, known to be detectable in dendrite#ilson et al.,

signal in each paired imageBi¢. 5A, bottom image). This 2000. Finally we co-stained MAP2 and GM130, a protein

artefact limits the occurrence of large overlapping conditions of the Golgi apparatus. For these four conditions we show

while thel oy index still reflects signal correlatioffrig. 5A, the results of the “merging” methodrig. 6A, upper line)
black scatter plot). This indicates that the nMDP method is and compare it to the corresponding nMDP imalgig (6A,
only slightly affected by background noise. bottom line). In each condition we acquired a set of 10 im-

Intensity dependent noise causes an increase in the signahge pairs and calculated the mean overlapping fraction in
variance Fig. 5B). Such fluctuations of signal variance affect % (Fig. 68) and the mearh.orr (Fig. 6C). As expected, co-
the nMDP calculation because they disrupt the point-to-point staining the same protein (MAP2) with two different anti-
signal correlation that is measured by the mean deviation. bodies results in strongly colocalized signafsg( 64, first

Uniform Poisson noise Intensity dependant noise

| corr Images nMDP ! C?” Images nMDP

1

0.8 0.8

0.6 0.6

i
Icorr=0.5

0.4 BE 0.4
0.2 . 0.2]
- -
0 0 0.5 0 05
0 20 40 60 80 0 20 40 60 80 100
Overlapping in % Overlapping in %
Image= Pnoise + 2DGaussian Image= 2DGaussian +(N* 2DGaussian)
N is uniformly randomized, mean=0
Var Pnoise Var singal VarN Var N*2DGaussian  Var singal
1 5000 0.01 30 5000
100 5000 05 1000 6500
(A) 1000 5000 (B) 1 1300 8000

Fig. 5. Noisy simulated data. (A) Scatter plbfsr vs. the overlapping fraction calculated for 500 image pairs. Each image is composed of a 2D Gaussian
curve randomly positioned and added with a uniform Poisson nBjggd) of defined variances. Blue, green, red, black, respectively, corresp&agdowith

variances 1, 10, 100 and 1000. On the right, two sample nMDP images obtaineyithvariance 10 (top) and 1000 (bottom) fiepr=0.5. (B) Scatter

plot, Icorr VS. the overlapping fraction calculated for 500 image pairs. Each image is composed of a 2D Gaussian curve randomly positioned and added with ar
intensity dependant noisé&l(x 2D Gaussian)N is normally randomized, mean =0, blue, green, red, black, respectively, correspgnariances 0.01, 0.1,

0.5 and 1, giving the indicated variances fbox 2D Gaussian. On the right, two sample nMDP images obtainedNwtériance 0.1 (top) and 1 (bottom) for
lcorr=0.5. Signal variances ardix 2D Gaussian variances are calculated approximations.
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Fig. 6. Experimental data. (A) Merged images (top row) and images of nMDP (bottom row) obtained from four double staining conditions, MAP2/MAP2
(first column), MAP2/VGIuT1 (second column), EEA1/MAP2 (third column) and GM130/MAP2 (fourth column). These four conditions explored different
possibilities from strong colocalization (MAP2/MAP2, yellow in merged image and hot colours in image nMDP) to exclusion (MAP2/VGIuT1, coldrtolours
image nMDP). White stars indicates the position of the soma, white arrow heads shows tubular structures positive for GM130 labeling, scalebéB)s 10

The mean overlapping fraction in %:6.E.M.), (C) the meahor (£S.E.M.), (D) the mean Pearsom’é+S.E.M.) and (E) the mean IC@ES.E.M.) calculated

for each condition.

column): the mean overlapping fraction is small compared to are not colocalized (cold colours in the image nMBiB, 6A,
the apparent colocalization (me#&5.E.M., 53 6%) while second column), although the VGIuT1 signal is found ap-
the mean o index is close to 1 (0.82 0.12). Double la- posed to MAP2 labeling. The calculated mean overlapping
beling for VGIuT1 and MAP2 reveals that these two markers fraction is not null (15 4%) and the meakr is slightly
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under 0.5 (0.46& 0.03) suggesting thatthese markers are seg- and most often does not permit the detailed (i.e. pixel
regated. In fact, territories devoid of MAP2 labeling are filled per pixel) quantification of the degree of colocalization.
by VGIUTL1 staining (and vice versa). In this particular case, Here we propose a simple and fully automated method
intensity variations in coupled images are almost in opposedto quantify and visualize colocalization between two
phases, when a pixel in the first image is above the mean in-images.

tensity, the corresponding pixel in the paired image is under  Through the use of derivate approximation the method
the mean intensity, yielding a negative value for the mean de-first defines an appropriate ROI without introducing user
viation product (and thus for the nMDP). The resulting nMDP biases. This method is easy to implemevYibghigi et al.,
distribution is shifted to the negative values and lihg in- 2003 but unfortunately remains rarely used. It must be
dex tends to be below 0.5. EEA1 and MAP2 overlaps to the noted that other convolution filters such as Canny’s method,
same level as MAP2 and VGIuT1 (EEA1/MAP2, £73%; Prewitt's method or the Robert’s method also permit the
MAP2/VGIuT1, 15+ 4%), but EEAlis also distributedalong approximation of the local derivate in imageSqgnzales
dendritic extensions and colocalizes with MAP2 (méah, and Woods, 2002 These various methods differ by their
0.78+0.01; hot colours in nMDP image, third column). As sensitivities and their orientations (derivate approximation is
previously described, the Golgi apparatus is mainly concen- calculated among a directionf(d, y)/dx, df(x, y)/dy or df(x,
trated around the nucleus in the neuronal soDatt{ and y)/d(x, y)). They allow a good estimation of the local derivate
Banker, 1991 Recently, GM130 positive tubular structures and thus also permit reliable edge detection. Nevertheless,
have been described in neurité$ofton and Ehlers, 2003 there is no requirement to use the derivate approximation to
Imaging nMDP reveals the Golgi matrix in the soma (cold process the correlation calculation and any method gener-
colour,Fig. 6A, last column) and some tubular structures in ating ROIs could be successfully used. Second, the calcu-
the dendrites (hot colour, white arrow healig;. 5A). These lated NMDP reflects variations of signals around the mean.
tubular structures did not appear in the “merging” method be- Other ways to correlate signals, such as deviation around the
cause the GM130 signal is too weak compared to the MAP2 local mean (calculated in pixels around the pixel of inter-
staining. The mean overlapping fraction is weak @.Q.2%) est) could alternatively be used. The main advantage of the
because the ROI detected for GM130 is small compared tonMDP is that the correlation is calculated for paired pixels
the ROI detected for MAP2, nonetheless thgr appropri- sharing the same spatial coordinates. An important limit is
ately illustrates the relative non-colocalization of both mark- that the mean calculation depends on the size of the ROI.

ers (0.55+0.01).

In order to compare the nMDP method to other methods,

we have calculated the Pearson'mdex and the ICQ (in-
tensity correlation coefficient) described by Li et al. for our
experimental conditionsH{g. 6D and E). The Pearsonis
index (see Sectiof) is a global index that efficiently iden-

For instance, if the two first defined ROI have extremely dif-
ferent sizes, the Boolean “OR” operation extends the field
of mean calculation which may cause an underestimation
of the mean intensity (and a corresponding overestimation
of the mean deviation). In the nMDP algorithm these bi-
ases are moderated by the normalization but this potential

tifies colocalized signals but does not differentiate between caveat must be taken into account while analysing images

the MAP2/MAP2, the EEA1/MAP2 and the GM130/MAP2
conditions Fig. 6D). To calculate the ICQ index, 0.5 is de-
ducted to the fraction of pixels with positive mean devia-
tion products divided by the total number of pixels explored
(ICQ =l¢orr— 0.5). Thus, the ICQ index detects the same vari-
ations as thécqr index (Fig. 6D) but gives no indication on
signal overlapping.

Across these examples it clearly appears that re-
flects with a high fidelity the relationship between two mark-
ers independently of their overlapping fraction. Moreover,
using nMDP image allows the spatial exploration of this
correlation and reveals what the “merging” method kept
hidden.

4. Discussion
The labeling and visualization of two or more partners

using imaging techniques is hampered by the intrinsic limit
of optical imaging (i.e. the resolution of the image) but also

NMDP. This limit can also be circumvented by using local
mean deviation but this would increase difficulties in image
processing.

Thelcorr index represents the fraction of pixels with posi-
tive nMDP values. This property makes thg index sensi-
tive to the contribution of pixels with an nMDP value slightly
greater than zero. This sensitivity might be considered for
clear result reading.

Using experimental data and simulated images we
show that: (1) the nMDP method is not critically af-
fected by background noise and intensity dependent noise;
(2) the simple calculation of a correlation index between
two images is not sufficient to quantify colocalization.
Here, we calculate the fraction of positive nMDP values
among the total analyzed pixel$.{;) and the overlap-
ping fraction of stainings. Interestingly, thko, index
is more discriminative than the Pearsom’sndex prob-
ably because thdcq, index is not dependant on sig-
nal variance. In conclusion, the nMDP method based on
the parallel analysis of the overlapping fraction and the

by the image processing per se which in most cases heavilycorrelation index is a powerful tool to directly image
relies on user-based decisions and previous experiencegolocalization.
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