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Abstract

The most commonly used method to analyze colocalization of fluorescent signal in paired images is based on superimposition of images
(“merging”) and visual inspection. A method based on the comparison of the mean deviation of fluorescent signal intensity has recently
been proposed to quantify colocalization within a user-defined area [Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF. A syntaxin 1,
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alpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization.
004;24:4070–81]. Unfortunately, the latter quantification method does not provide a spatial representation of the correlation b

wo fluorescent signals. Here we propose a new method that combines quantification and imaging of colocalization. We describe a
ased on edge detection and calculation of signal intensity deviation. The method is illustrated and validated on both simulated
xperimental data. This new and automated method calculates a correlation index (Icorr) and generates an image of the correlated signals
he two original images. In addition to help in comparing and quantifying colocalization between two fluorescent stainings, this m
e adapted to measure the distribution of ions, proteins, organelles and cells in a large array of techniques.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Imaging of fluorescent signals is widely used in the
eld of life sciences to investigate the localization of
ons, proteins, organelles and cells in a large array of
echniques (e.g. immunocytochemistry, calcium imaging,
mmunohistochemistry, etc.). An often-asked question is
hether two partners of interest are concentrated in the
ame domains, in other words whether they are colocalized
r not. Signals are colocalized when they are observed

n overlapping area and when their intensities vary in
ynchrony within a defined region. The most classical
pproach to determine the colocalization of fluorescent
arkers is based on the “dye-overlay method” (Li et al.,

∗ Corresponding author. Tel.: +33 5 57 57 40 95; fax: +33 5 57 57 40 82.
E-mail address:fjaskol@pcs.u-bordeaux2.fr (F. Jaskolski).

2004) (a.k.a. “merging”). This representation is based
the superimposition of fluorescent signals in two (or th
superimposed layers. It allows a binary estimation of whe
the two fluorescent signals occur within the same or in
ferent regions. The main advantage of “merging”, besid
easiness, is that it preserves spatial information (contour
shape of the observed object). However “merging” is sub
to the perception of the investigator and forbids any qua
cation. To quantify colocalization, the main approach is b
on calculating the Pearson’s correlation coefficient (“r”, see
Section2) (Manders et al., 1992). This correlation index i
useful for quantification but does not provide any informa
concerning the localization of both signals of interest. N
of these methods combine the exploration of the two cri
that defines colocalization (i.e. overlapping and co-variat

Li et al. (2004)have proposed a method named “inten
correlation analysis” that permits to quantify the colocal

165-0270/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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tion of fluorescent signals. This method is derived from the
measure of the deviation from the mean intensity for each
pixel and for both signals in paired images, and yields a
global correlation index for the paired images (like Pearson’s
correlation index “r”). The resulting single value can be used
to quantify the correlation between the two original images
but the spatial information (i.e. “the image”) is still lost.
Lately, another automated method to quantify colocalization
has been proposed (Costes et al., 2004). This procedure
is based on spatial statistics and enables quantification by
thresholding the correlation of paired pixels.

Here, we propose a modification of the “intensity correla-
tion analysis” method (Li et al., 2004). Our method permits
the quantification of correlation while preserving the spatial
information by evaluating correlation between pairs of indi-
vidual pixels rather than between global images, and thus im-
age the distribution of the degree of correlation for each pixel.
This new method is set to define regions of interest (ROIs) in
both paired images, create a single region to investigate the
signal correlation, and calculate the correlation image, the
overlapping fraction and an appropriate index of correlation.
Correlation images provide a cross view of biological com-
partments and intensity variations revealing what was hidden
in eye-based exploration. We tested our method on simulated
images to explore a wide range of colocalized combinations
and put it to the test on experimental data. This useful auto-
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anti-rabbit Alexa 568 and 488 conjugated IgGs (#A-11011
and #A-11001, Molecular Probes, OR, USA), anti-mouse
Alexa 568 and 488 conjugated IgGs (10�g/ml, A-11008
and A-11004, Molecular Probes).

2.3. Image acquisition

Confocal images were acquired on a Leica TCS SP2 mi-
croscope. The exposure settings and gain of laser were kept
the same for each condition. Ten fields were acquired by con-
dition, a single focal plane by field (Airy 1).

2.4. Numeric treatment and algorithm generation

Image analysis, algorithm generation, statistical analysis
and simulations were performed under MATLAB 6 soft-
ware (MathWorks, Natick, MA, USA). The Matlab
script is available at:http://www.synapse.u-bordeaux2.fr/
pagesperso/jaskolski.htm.

2.5. Supplementary formulas

Pearson’sr =
∑N

a,b(a − ā)(b − b̄)

(N − 1)(σaσb)

δx is the variance forx.
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ses and enables quantification and imaging of colocaliz
f two fluorescent signals.

. Methods

.1. Hippocampal cultures

Primary cultures of hippocampal neurons were obta
rom 1-day-old pups of C57-BL/6 mice. Hippocampi w
issociated with papain followed by mechanical tritura
nd plated at 50,000 cells/cm2 in MEM-EAGLE supple-
ented with 0.5%d-glucose, 0.1 mg/ml transferrin, 25�g/ml

nsulin, 2 mM Glutamax (Life Technologies, France) a
�g/ml gentamycin; 2% B-27 (Sigma, MO, USA) and 1�M
ytosine arabinoside were added 3 days after plating.

.2. Immunostaining

Cells were fixed in PFA (4%), and kept in PBS ad
ith 0.3% BSA and 0.05% saponin during the steps

equire membrane permeabilisation. Epitopes were det
sing monoclonal anti-MAP2 antibody (Ab) (1:500, #H
, Sigma), polyclonal anti-MAP2 Ab (1:500, Penins
aboratories Europe), polyclonal anti-VGlut1 Ab (1:5
Herzog et al., 2001), monoclonal anti-EEA1 Ab (1:500, B
ransduction Laboratories) and a monoclonal anti-GM1
b (1:500, BD Transduction Laboratories) incubated
h at RT. Secondary Ab are incubated for 1 h at 20◦C; Ab
. Results

.1. A method to select regions of interest based on ed
etection by derivate approximation

Before evaluating colocalization of two stainings in pa
mages, it is necessary to determine the relevant “regio
nterest” (ROIs) in both images in order to separate si
rom background but also to determine a common regio
oth images in which putative signal fluctuations might be
vant. The most common approach is background excl
ased on a “manual intensity threshold” where the thres
an be subjectively estimated or calculated as a product
ean background intensity (Jaskolski et al., 2004; Osten
l., 2000). This simple method is user-based and introd
bvious biases that may compromise the quantificatio

he resulting processed images. In order to reduce as
s possible such biases, we propose to use an approach
n the detection of signal edges by a “Sobel filter” (Gonzales
nd Woods, 2002). The method uses derivate approximat

nflections in the derivate occur when signal increases o
reases with steep slopes (Fig. 1A). Derivate approximatio
s performed using a two-dimensional convolution with “
el’s kernels” (Fig. 2B) (Yoshigi et al., 2003). A threshold is

hen set in the distribution of local derivates to surround
al delimited by equal derivate values. Surrounded field
lled to generate binary mask images. The ROI are obta
y multiplying the original image by the mask image. T

http://www.synapse.u-bordeaux2.fr/pagesperso/jaskolski.htm
http://www.synapse.u-bordeaux2.fr/pagesperso/jaskolski.htm


44 F. Jaskolski et al. / Journal of Neuroscience Methods 146 (2005) 42–49

Fig. 1. Use of derivate approximation to define ROI. (A) Line-scan (y-axis)
of 30 pixels among an image of fluorescence across a bright dot (black, ob-
tain from image in C) and its derivate approximation (red). Red lines indicate
how derivate approximation can be used to define the edges of the ROI. (B)
“Sobel’s kernels” successively used to calculate the derivate approximation.
(C) Top image: crop of a stained neuron (immunostaining of surface ex-
pressed glutamate receptors); bottom panel: corresponding outlined image
after edge detection with “Sobel’s kernels”.

threshold can be set as a product of the mean derivate in the
non-relevant background regions. This method allows the de-
termination of ROI with low user biases (Fig. 1C). ROIs are
thus defined for both images. In the case of no colocalization,
the ROI determined in the first image will be excluded from
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the ROI detected in the corresponding (“paired”) image. To
circumvent this problem we used a simple Boolean operation
(“OR”) in order to generate a single ROI that encompasses
the relevant regions of both images. We can now define a
single territory from a pair of images and use it to explore
the correlation of both signals within the shared ROI. Finally,
other methods like the “manual intensity threshold” can be
used to define ROIs. The use of edge detection methods is
not required to apply the correlation analysis method.

3.2. Quantification and visualization of colocalized
fluorescent signals

Recently,Li et al. (2004)have proposed an alternative
to the classical “dye-overlay” method, “intensity correlation
analysis”, which allows quantitative analysis of colocalized
fluorescent signals. This method assumes that the intensity of
two colocalized signals vary in synchrony over the selected
image. It measures the mean intensity deviation in each pixel
of the paired images and calculates the sum of the product of
mean deviation over the selected ROI. The resulting single
value is an index that reflects the global intensity of corre-
lation between the two signals for the whole image. Other
methods expressing the correlation in two images by a single
value already exist (Manders et al., 1992) (e.g. Pearson’s cor-
relation index, see Section2) and although they can provide a
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ig. 2. Quantification and visualization of colocalized fluorescent sig
A) Formula for nMDP calculation. “x” and “y” correspond to pixel co
rdinates, “Ia” is the intensity in image “a” for the given pixel, same
Ib”, barred “Ia” and “Ib” are mean intensity values across respective

ges (in the defined common ROI). Bracket expressions indexed “max” are

he maximum mean deviations calculated in each image. (B) Generation of
mages nMDP starting with two sets of simulated images: a colocalized set
top row) and a not colocalized set (bottom row). (C) Distribution of nMDP
alues for the colocalized condition (red) and the not colocalized condition
blue) among the nMDP scale (−0.5 to 0.5). This scale is combined with
n appropriate lookup table, from black to white in hot colours for positive
MDP values, in cold blue variations for negative nMDP values. The formula

or Icorr calculation as the fraction of positive nMDP values (n2) divided by
he total calculated nMDP values (n1 + n2) is also given.

r
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A rs
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t are
uantification of correlation they most notably share the
dvantage of losing spatial information. Ideally, one wo

ike to implement a method that permits the quantifica
f correlation while preserving the spatial information o

he paired images. Images are space functions of gray
ntensity that we processed as matrix of entangled triplex
ndy positions andI as the gray value intensity (Ia, inten-
ity in image a). We first calculated the mean intensity
oth signals (a and b) over the ROI, and the mean d

ion product for the two signals ((Ia − Īa)(Ib − Īb)) for each
et of (x, y) coordinates. In order to compare series of
ges, we normalized these values by dividing with the p
ct of maximum mean deviations and we obtained for
et of (x, y) coordinate the “normalized mean deviation pr
ct” (nMDP = (Ia − Īa)(Ib − Īb)/(Ia max− Īa)(Ib max− Īb))
Fig. 2A). We then generated an image displaying the
ial distribution of calculated nMDP values (image nMD
ig. 2B) with an appropriate lookup table. The nMDP
ex varies from−1 to 1, where negative values repres
on-correlated pixels while positive values indicate co

ated pixels (Fig. 2C). The absolute value depends on
eviation to the mean of bothIa andIb and thus quantifies th
elationship between these values.

We first tested this method on artificial images gener
o simulate either strong colocalization or no colocalizat
s shown inFig. 2, correlated pixels appear in “hot” colou

nMDP > 0) and non-correlated pixels in “cold” colou
nMDP < 0). The “black ring” in the colocalized ima
MDP represents the region where the values tend to

he mean. It must be noted that pixels out of the ROI



F. Jaskolski et al. / Journal of Neuroscience Methods 146 (2005) 42–49 45

Fig. 3. Algorithm: schematic representation of the successive steps of the automated algorithm that generate image nMDP (blue box) from original images
(green box). A third arm calculates the merged image (pink box).

represented in black in the image nMDP. Because a single
index for each image pair is useful to sample and compare
different conditions, we calculated the fraction of positively
correlated pixels among the image nMDP. This value,Icorr,
reflects the distribution of nMDP values (Fig. 2C).

3.3. Algorithm

In an image, gray values are discretely sampled from
0 to 255 for 8-bit indexed images and from 0 to 4095 in
12-bit indexed images. These variables cannot be used for
derivate approximation or nMDP calculation (irrationals and
negative numbers are generated). To overcome this problem
we worked with matrices rather than images by converting
8-bit indexed images to three-dimensional matrices of double
floating variables. We generated an algorithm using Matlab
6 software (MathWorks, Natick, MA, USA) that automates
the successive steps required for the quantification of the
colocalization of fluorescent signals in paired images using
our nMDP algorithm (Fig. 3, blue box). The function first
opens the images (Fig. 3, green box), asks for background
selection then calculates the ROI in each image, applies the
Boolean operator “OR” and calculates nMDP values. We
have added in the algorithm an arm that calculates the merged
image (Fig. 3, pink box). The function also displays two
v al
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The Gaussian signal was randomly positioned in each image
and the set of images was analyzed with the automated algo-
rithm (without background selection).Icorr was plotted as a
function of the overlapping fraction after 10,000 successive
simulations (Fig. 4). The overlapping fraction corresponds
to the number of pixels charred by the two first defined ROIs
divided by the size in pixel of the complete ROI generated by
the Boolean operator. Several possible distribution of both
signals ranging from strong colocalization (Fig. 4A) to adja-
cent not overlapping (Fig. 4D) were explored. As expected,
Icorr increased when the signals overlapped. Two regions
(marked in gray) were not explored by the simulation: they
correspond to 1/overlapping events that are not correlated (an
impossible case) and 2/correlated images that only slightly
overlap. This last case can be observed when the simulation
is performed with two 2D Gaussians per image (data not
show). It corresponds to cases where the calculated ROIs

F 00
i domly
p trong
c on.
alues,Icorr and the overlapping fraction of the two origin
OIs (ROIa and ROIb). This procedure can be adapted to
oftware that allows matrix calculation and visualizat
he Matlab script is available at:http://www.synapse.u
ordeaux2.fr/pagesperso/jaskolski.htm.

.4. Icorr distribution

Next, we evaluated how the correlation index (Icorr)
ompares to the overlapping fraction and how it is
ributed among all possible positions. Thus, we gener
airs of images (62× 62 pixels) each containing a tw
imension Gaussian signal of gray values (31× 31 pixels)
ig. 4. Scatter plot,Icorr vs. the overlapping fraction calculated for 10,0
mage pairs. Each image is composed of a 2D Gaussian curve ran
ositioned. Left column displays four examples of images nMDP from s
olocalization (A) to close apposition (D) obtained during the simulati

http://www.synapse.u-bordeaux2.fr/pagesperso/jaskolski.htm
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have different sizes so that the relative overlapping fraction
is weak but signals are correlated within the whole explored
region. An interesting observation is that the minimumIcorr
is measured for 10% overlapping signals and that it slightly
increases when the overlapping fraction tends to 0. In this
configuration most pixels are under the mean in both images
so that the resulting nMDP is positive andIcorr increases. In
order to obtain anIcorr value around 0, the signals must be in
opposite phases in the entire explored territory (we assume
that this would be an extremely rare case).

Because experimental images are noisy, we next tested
how different types of noise alter the nMDP correlation anal-
ysis. Two types of noise were added to the simulated images: a
uniform Poisson noise (Pnoise) corresponding to background
and an intensity dependant noise (classically “light noise”).

WhenPnoiseis added to the two dimensions Gaussian sig-
nal, the correlation betweenIcorr and the overlapping fraction
is maintained until the variance ofPnoise reaches the order
of magnitude of the signal variance (Fig. 5A). The limit ob-
served whenPnoisevariance reaches signal variance is indeed
due to the sensitivity of the Sobel’s edge detection method
to background. In this case, background can be mistaken for
signal in each paired images (Fig. 5A, bottom image). This
artefact limits the occurrence of large overlapping conditions
while theIcorr index still reflects signal correlation (Fig. 5A,
black scatter plot). This indicates that the nMDP method is
o

signa
v ect
t oint
s tion.

However, “reasonable” intensity dependant noise (i.e. noise
variance <200) does not affect the relation betweenIcorr
and the overlapping fraction (Fig. 5B), strongly suggesting
that the nMDP method is not critically affected by intensity
dependent noise.

3.5. Experimental test

Finally, we tested our method on genuine images obtained
from cultured neurons stained with two fluorescent markers.
Cultured mouse hippocampal neurons (21 DIV) were fixed
and immunostained with various antibodies in order to gen-
erate representative fluorescent signals. First, to obtain strong
colocalization, neurons were labeled with two different an-
tibodies directed against the same protein, the microtubule
associated protein 2 (MAP2, a somato-dendritic marker), a
rabbit polyclonal antibody and a mouse monoclonal antibody.
Second, we labeled MAP2 together with the synaptic vesicu-
lar glutamate transporter 1 (VGluT1, a presynaptic marker of
glutamatergic synapses) (Herzog et al., 2001). Third, we co-
stained MAP2 and the early endosomal Rab5 effector protein
(EEA1, known to be detectable in dendrites) (Wilson et al.,
2000). Finally we co-stained MAP2 and GM130, a protein
of the Golgi apparatus. For these four conditions we show
the results of the “merging” method (Fig. 6A, upper line)
and compare it to the corresponding nMDP image (Fig. 6A,
b im-
a n in
% -
s nti-
b

F raction aussian
c of defin
v ges ob r
p ach im ded with an
i mean 1,
0 ht, two or
I ed app
nly slightly affected by background noise.
Intensity dependent noise causes an increase in the

ariance (Fig. 5B). Such fluctuations of signal variance aff
he nMDP calculation because they disrupt the point-to-p
ignal correlation that is measured by the mean devia

ig. 5. Noisy simulated data. (A) Scatter plot,Icorr vs. the overlapping f
urve randomly positioned and added with a uniform Poisson noise (Pnoise)
ariances 1, 10, 100 and 1000. On the right, two sample nMDP ima
lot, Icorr vs. the overlapping fraction calculated for 500 image pairs. E

ntensity dependant noise (N× 2D Gaussian).N is normally randomized,
.5 and 1, giving the indicated variances forN× 2D Gaussian. On the rig

corr = 0.5. Signal variances andN× 2D Gaussian variances are calculat
l
ottom line). In each condition we acquired a set of 10
ge pairs and calculated the mean overlapping fractio

(Fig. 6B) and the meanIcorr (Fig. 6C). As expected, co
taining the same protein (MAP2) with two different a
odies results in strongly colocalized signals (Fig. 6A, first

calculated for 500 image pairs. Each image is composed of a 2D G
ed variances. Blue, green, red, black, respectively, correspond toPnoisewith
tained withPnoise variance 10 (top) and 1000 (bottom) forIcorr = 0.5. (B) Scatte
age is composed of a 2D Gaussian curve randomly positioned and ad
= 0, blue, green, red, black, respectively, correspond toN variances 0.01, 0.
sample nMDP images obtained withN variance 0.1 (top) and 1 (bottom) f

roximations.
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Fig. 6. Experimental data. (A) Merged images (top row) and images of nMDP (bottom row) obtained from four double staining conditions, MAP2/MAP2
(first column), MAP2/VGluT1 (second column), EEA1/MAP2 (third column) and GM130/MAP2 (fourth column). These four conditions explored different
possibilities from strong colocalization (MAP2/MAP2, yellow in merged image and hot colours in image nMDP) to exclusion (MAP2/VGluT1, cold coloursin
image nMDP). White stars indicates the position of the soma, white arrow heads shows tubular structures positive for GM130 labeling, scale bar is 10�m. (B)
The mean overlapping fraction in % (±S.E.M.), (C) the meanIcorr (±S.E.M.), (D) the mean Pearson’sr (±S.E.M.) and (E) the mean ICQ (±S.E.M.) calculated
for each condition.

column): the mean overlapping fraction is small compared to
the apparent colocalization (mean± S.E.M., 59± 6%) while
the meanIcorr index is close to 1 (0.89± 0.12). Double la-
beling for VGluT1 and MAP2 reveals that these two markers

are not colocalized (cold colours in the image nMDP,Fig. 6A,
second column), although the VGluT1 signal is found ap-
posed to MAP2 labeling. The calculated mean overlapping
fraction is not null (15± 4%) and the meanIcorr is slightly
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under 0.5 (0.46± 0.03) suggesting that these markers are seg-
regated. In fact, territories devoid of MAP2 labeling are filled
by VGluT1 staining (and vice versa). In this particular case,
intensity variations in coupled images are almost in opposed
phases, when a pixel in the first image is above the mean in-
tensity, the corresponding pixel in the paired image is under
the mean intensity, yielding a negative value for the mean de-
viation product (and thus for the nMDP). The resulting nMDP
distribution is shifted to the negative values and theIcorr in-
dex tends to be below 0.5. EEA1 and MAP2 overlaps to the
same level as MAP2 and VGluT1 (EEA1/MAP2, 17± 3%;
MAP2/VGluT1, 15± 4%), but EEA1 is also distributed along
dendritic extensions and colocalizes with MAP2 (meanIcorr,
0.78± 0.01; hot colours in nMDP image, third column). As
previously described, the Golgi apparatus is mainly concen-
trated around the nucleus in the neuronal soma (Dotti and
Banker, 1991). Recently, GM130 positive tubular structures
have been described in neurites (Horton and Ehlers, 2003).
Imaging nMDP reveals the Golgi matrix in the soma (cold
colour,Fig. 6A, last column) and some tubular structures in
the dendrites (hot colour, white arrow heads,Fig. 5A). These
tubular structures did not appear in the “merging” method be-
cause the GM130 signal is too weak compared to the MAP2
staining. The mean overlapping fraction is weak (1.1± 0.2%)
because the ROI detected for GM130 is small compared to
the ROI detected for MAP2, nonetheless theI appropri-
a ark-
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and most often does not permit the detailed (i.e. pixel
per pixel) quantification of the degree of colocalization.
Here we propose a simple and fully automated method
to quantify and visualize colocalization between two
images.

Through the use of derivate approximation the method
first defines an appropriate ROI without introducing user
biases. This method is easy to implement (Yoshigi et al.,
2003) but unfortunately remains rarely used. It must be
noted that other convolution filters such as Canny’s method,
Prewitt’s method or the Robert’s method also permit the
approximation of the local derivate in images (Gonzales
and Woods, 2002). These various methods differ by their
sensitivities and their orientations (derivate approximation is
calculated among a direction, df(x, y)/dx, df(x, y)/dy or df(x,
y)/d(x, y)). They allow a good estimation of the local derivate
and thus also permit reliable edge detection. Nevertheless,
there is no requirement to use the derivate approximation to
process the correlation calculation and any method gener-
ating ROIs could be successfully used. Second, the calcu-
lated nMDP reflects variations of signals around the mean.
Other ways to correlate signals, such as deviation around the
local mean (calculated in pixels around the pixel of inter-
est) could alternatively be used. The main advantage of the
nMDP is that the correlation is calculated for paired pixels
sharing the same spatial coordinates. An important limit is
t ROI.
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tely illustrates the relative non-colocalization of both m
rs (0.55± 0.01).

In order to compare the nMDP method to other meth
e have calculated the Pearson’sr index and the ICQ (in

ensity correlation coefficient) described by Li et al. for
xperimental conditions (Fig. 6D and E). The Pearson’sr

ndex (see Section2) is a global index that efficiently ide
ifies colocalized signals but does not differentiate betw
he MAP2/MAP2, the EEA1/MAP2 and the GM130/MA
onditions (Fig. 6D). To calculate the ICQ index, 0.5 is d
ucted to the fraction of pixels with positive mean de

ion products divided by the total number of pixels explo
ICQ = Icorr− 0.5). Thus, the ICQ index detects the same v
tions as theIcorr index (Fig. 6D) but gives no indication o
ignal overlapping.

Across these examples it clearly appears thatIcorr re-
ects with a high fidelity the relationship between two ma
rs independently of their overlapping fraction. Moreo
sing nMDP image allows the spatial exploration of
orrelation and reveals what the “merging” method k
idden.

. Discussion

The labeling and visualization of two or more partn
sing imaging techniques is hampered by the intrinsic
f optical imaging (i.e. the resolution of the image) but a
y the image processing per se which in most cases he
elies on user-based decisions and previous experi
hat the mean calculation depends on the size of the
or instance, if the two first defined ROI have extremely

erent sizes, the Boolean “OR” operation extends the
f mean calculation which may cause an underestim
f the mean intensity (and a corresponding overestim
f the mean deviation). In the nMDP algorithm these
ses are moderated by the normalization but this pote
aveat must be taken into account while analysing im
MDP. This limit can also be circumvented by using lo
ean deviation but this would increase difficulties in im
rocessing.

TheIcorr index represents the fraction of pixels with po
ive nMDP values. This property makes theIcorr index sensi
ive to the contribution of pixels with an nMDP value sligh
reater than zero. This sensitivity might be considered
lear result reading.

Using experimental data and simulated images
how that: (1) the nMDP method is not critically
ected by background noise and intensity dependent n
2) the simple calculation of a correlation index betw
wo images is not sufficient to quantify colocalizati
ere, we calculate the fraction of positive nMDP val
mong the total analyzed pixels (Icorr) and the overlap
ing fraction of stainings. Interestingly, theIcorr index

s more discriminative than the Pearson’sr index prob-
bly because theIcorr index is not dependant on s
al variance. In conclusion, the nMDP method based

he parallel analysis of the overlapping fraction and
orrelation index is a powerful tool to directly ima
olocalization.
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